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Abstract

An increasing number of high-performance distributed sys-

tems are executed on top of runtime environments like Java

Runtime Environment (JRE), such as Cassandra [1], Hadoop

[2], Spark [3], Hazelcast [4], Alluxio [5], Hive [6], and Re-

thinkDB [7]. The developers are attracted to a managed

language like Java as it offers services like Garbage Collec-

tion (GC), run-time type checking, reference checking, and

cross-platform execution. However, many applications run-

ning on the JVM (e.g., big data frameworks such as Hadoop,

data stores such as Cassandra) suffer from long garbage col-

lection (GC) time. The long pause time due to Stop-The-

World (STW) during Garbage-Collection (GC) not only de-

grades application throughput and causes long latency, but

also hurts overall system efficiency and scalability.

To address these problems, we implement MITMEM that

provides JVM support to cut millisecond level tail latencies

induced by GC. MITMEM is a JVM drop-in replacement, re-

quires no configuration and can run off-the-shelf Java appli-

cations with a minimum modification (e.g., adding 120 LOC

to integrate with Cassandra). Our experiments indicate that

the MITMEM-powered Cassandra successfully reduces the

tail latency up to 99%.

1 Introduction

Since Google published the seminal “The Tail at Scale” ar-

ticle in 2013 [8], tail latency has grown to be an important

concept and research topic [9, 10]. Likewise in the storage

world, many varieties of products including hyper converged

storage, key-value stores and databases, are advertised not

only with traditional metrics such as throughput and average

latency, but tail latency as well (e.g. Xms latency guaran-

teed at the Y th percentile) [11–14]. At the same time, an

increasing number of high-performance distributed systems

are executed on top of runtime environments like Java Run-

time Environment (JRE), such as Cassandra [1], Hadoop [2],

Spark [3], Hazelcast [4], Alluxio [5], and Hive [6]. The

developers are attracted to a managed language like Java

as it offers services like Garbage Collection (GC), run-time

type checking, reference checking, and cross-platform exe-

cution. Moreover, the automated memory management en-

ables faster development with less boilerplate code, while

eliminating memory leaks and other memory-related prob-

lems. With all of those advantages, developers can build ro-

bust distributed systems with a simpler design that focusing

on the performance, availability, and scalability.

IDC (International Data Corporation) predicts that the

global datasphere will grow from 45 Zettabytes in 2019 to

175 Zettabytes by 2025 [15]. In all likelihood, those java-

based systems will keep growing and fast evolving to keep

up with the increasing demand for more efficient and better

(scalability, availability, and performance) storage systems.

Therefore, the role of Java Virtual Machine (JVM) is not

only very important in our cloud ecosystems, but also be-

coming very critical. One issue of JVM that attracts most

attention from the research community is its Garbage Col-

lection (GC) problem. Although Java Memory Management

is regarded as one of the language’s finest achievements, it

is also one of the most crucial components that poses an

open challenge to design a better automated memory man-

agement [16]. Over the course of GC evolution, there have

been various GC algorithms being developed and perfected

such as G1GC [17], ParallelGC [18], Shenandoah [19], ZGC

[20]. The main difference among those algorithm will be ex-

plained in Background (Section §2). Most GC algorithms

are employing Stop-The-World (STW) pauses, and they are

facing the same performance issues as shown in many stud-

ies [21–23].

The fact that GC’s Stop-The-World (Figure 1) must pause

mutators (threads that modify objects in heap), the GC dura-

tion contributes to a non-trivial portion of application execu-

tion time which can take up to one-third of the total execu-

tion time of an application [22]; and it can seriously injured

the application performance as experienced by LinkedIn [24]

and Instagram [25] which lead to poor scalability on multi-

core systems with large memory. It can even account for half

of the processing time in memory-intensive big data systems

[21, 26]. Moreover, the exceedingly long garbage collection

time hurts system throughput and incurs unpredictable and

severely degraded tail latency in interactive services [27, 28].

There are various techniques proposed to reduce GC over-

head [21, 26, 29], but such techniques will increase the bur-

den on developers by requiring them to add additional logic

(annotation) to their code base. Moreover, integrating it with

the existing complex system forces the developer to rewrite

the entire code base which negates much of the benefit of
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using managed languages. The garbage collection impact is

often unpredictable because the production workload can’t

be easily simulated during testing. The system itself are

also evolving by adapting new techniques and more features

causing uncertain behavior at the runtime. As a result, the

users must monitor the JVM’s performance continuously and

adjust the GC parameters periodically as the workload and

systems are continuously evolving.

To address these problems, we propose a fast-rejecting

GC-aware mechanism called MITMEM. The MITMEM-

powered JVM can be integrated with any systems with-

out requiring modification to the existing code base. MIT-

MEM proactively uses JVM’s detailed knowledge about its

resources usage to avoid long tail latency induced by GC.

When the JVM informs the application about a long ser-

vice latency, applications can better manage impacts on the

tail latencies. Depending on their Service-Level Agreement

(SLA), the applications can choose not to wait and perform

an instant failover to another replica. MITMEM enables the

application to further utilize the nature of modern distributed

systems that always put replication on its core design.

To this end, we introduce MITMEM, a JVM that employs

a fast-rejecting GC-aware interface to support millisecond

tail tolerance. MITMEM is based on the OpenJDK8 and

is a JVM drop-in replacement. We materialize this concept

within the JVM Hotspot module, primarily because GC are

the major resource of contention for Java application. In

a nutshell, MITMEM provides a GC-aware reply interface

which will help the application avoid a long tail latency in-

duced by GC. The biggest challenge in supporting a fast re-

jecting interface is the development of an always-running

thread (we call this thread as SpecialThread) that will send

rejection to the clients during STW pauses. Implementing

the SpecialThread requires understanding the nature of ob-

ject allocation and the underlying signal communication be-

tween Operating System (OS) and JVM. Furthermore, the

SpecialThread needs to escape the safepoint check and be

able to access its special heap during GC. Finally, the over-

head should be negligible and the SpecialThread must be

robust when dealing with multiple client connections.

To examine MITMEM can benefit applications, we study

data-parallel storage such as distributed NoSQL systems.

Examination show that many NoSQL systems do not adopt

tail-tolerance mechanisms §2.1, and thus can benefit from

MITMEM support. Evaluated on a 6 nodes cluster with syn-

thetic workload, we show that MITMEM-powered Cassan-

dra can cut the tail latency up to 99%. At the same time,

MITMEM adds negligible overhead, and is robust against

multiple client connections. In summary, our contributions

are: design and working examples of MITMEM, and demon-

stration that MITMEM-powered Cassandra can leverage a

fast-rejection mechanism to achieve significant latency re-

ductions. We close with discussion, related work, and con-

clusion.

2 Motivation and Background

We first describe the lack of tail-tolerance mechanism in

popular NoSQL systems. Second, we provide a brief back-

ground on garbage collection, garbage collectors, and Paral-

lelGC. Next, we provide a concrete example of tail latencies

in Cassandra due to garbage collection. And then, we review

state-of-the-art solutions in the last decade that include the

evolution of garbage collection algorithms and tail-tolerance

mechanisms.

2.1 Lack of Tail-Tolerance Mechanism

In this section we want to highlight that not all NoSQL sys-

tems have sufficient tail-tolerance mechanisms. Based on

our prior study [30], six popular NoSQL systems (Cassandra,

Couchbase, HBase, MongoDB, Riak, and Voldemort) does

not failover from the busy replica to the less-busy ones when

there are I/O contentions for one second. As one of the most

popular Java-based NoSQL systems [31, 32], Cassandra is

severely impacted by JVM’s GC [24, 25]. Although Cas-

sandra employs snitching, it is not effective with 1-second

rotating burstiness. From the same study [30], Cassandra by

default has a very high time out value, 12 seconds. Thus, an

IO can stall for a long time without being retried which are

the cause of tail latencies.

2.2 Garbage Collection

Java’s automatic memory management feature is handled by

the garbage collection process. When a Java program runs,

it creates many objects on the heap throughout its running

time. The garbage collector will dispose any unused ob-

jects and delete them to free up memory. Two of the most

widely adopted techniques used by various GC algorithms

are Stop-The-World (STW) approach (implemented on Par-

allelGC, CMS, and G1GC) and concurrent approach (imple-

mented on CMS, G1GC, ZGC, and Shenandoah). The thread

that runs GC algorithm can be called collectors; the one that

implements STW approach is called stop-the-world collec-

tors, while the concurrent collector is for the threads that uses

concurrent approach. One GC algorithm could make use of

both techniques as depicted by Table 1. The details of the

state-of-the-art GC algorithm will be explained in §2.5.

STOP-THE-WORLD Stop-the-world approach is the old-

est and simplest technique [22]. It also delivers the highest

throughput compared to other approaches. As depicted by

Figure 1, stop-the-world works by first completely stopping

the mutators (threads that modify the object in heap, i.e. ap-

plication threads or user program). Then starting from a root

set of pointers (registers, stacks, global variables), it traces

all live objects (the object currently used by the program).

Each GC algorithm could have a different process/phase dur-

ing the stop-the-world period. Generally, the algorithm will

mark the live object and relocate them to reduce heap frag-

mentation. Once the process completed, the application can
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Table 1: Summary of JVM’s garbage collectors de-

sign. Red-shades represents stop-the-world collectors; while

green-shades represents concurrent collectors. ZGC and Shenan-

doah are released under experimental-gc category.

be resumed and the mutators can allocate a new object to the

freed spaces. The simplicity of its design makes STW ap-

proach popular, and it has been adopted in various managed

languages such as Go, Ruby, and Oracle’s JVM (by default).

However, since stop-the-world pauses the application for do-

ing any task, it contributes to significant pause times that are

proportional to the number of live pointers and the size of

the heap. As a result, state-of-the-art GC algorithms that em-

ploy STW can have pause times of 10–40ms per GB of heap

[22]. This long pauses are notorious for causing tail latency

at Java-based systems [24, 25].

CONCURRENT This technique is fully adopted in the

JVM’s newest GC algorithms such as Shenandoah [19]

and ZGC [20]. Implementing concurrent approach is the

straightforward solution to reduce the pause time caused by

STW collectors because it enables the GC processes/phases

to run concurrently with application threads. The concurrent

collector is using techniques such as read and write barriers

to detect and fix concurrent modifications to the heap while

tracing live data and/or relocating objects. These techniques

minimize the pause times significantly compared to the stop-

the-world approach [16]. However, concurrent garbage col-

lectors have lower-throughput, higher implementation com-

plexity, and edge cases that still require GC pauses. Oracle’s

JVM, for example, has combined concurrent collectors with

parallel collectors in G1GC, but the pause times is higher

than ParallelGC (which only uses parallel collectors) [16].

This because G1GC could cause too much STW when allo-

cating a humongous object. In the other case, Oracle also de-

veloped two experimental GC algorithms, Shenandoah [19]

and ZGC [20], that fully utilize concurrent approach and they

almost have no pauses [16]. The drawback is that they have

higher complexity than parallel collectors, especially when

doing reference checking. Generally, the concurrent col-

lectors introduces more load to the processing unit by im-

plementing a smarter algorithm on each GC’s phase. This

project will not cover any CPU-related contention, and our

solution will focus on solving the tail latency problem in-

duced by stop-the-world pauses.

Figure 1: ParallelGC Phases. There are three phases: init

phase (VM thread), parallel phase (GC threads), and final phase

(VM thread). These phases are executed within Stop-The-World

barrier, and mutators (i.e. application threads) are getting paused

during that period.

2.3 ParallelGC

As depicted by Figure 1, ParallelGC collection involves three

phases: initialization phase, parallel phase, and final syn-

chronization phase [22]. In the initialization phase, VM

thread suspends all mutators (i.e. application threads) be-

fore waking up the GC threads. After the GC threads be-

come live, the VM thread sleeps and waits for the final phase.

Collection is performed in the parallel phase, in which the

GCTaskManager creates and adds GC tasks into the GC-

TaskQueue from where multiple GC threads can fetch and

execute them in parallel. The global task queue enables Par-

allelGC to have dynamic task assignment among GC threads.

ParallelGC is also regarded as generational garbage col-

lection since it divides the heap into multiple generations:

young, old, and permanent generation. The young genera-

tion is further divided into one eden space and two survivor

spaces (from-space and to-space). When the eden space is

filled up, a MinorGC is performed. Referenced objects in

eden and from-survivor space are moved to the to-survivor

space, and unreferenced objects are discarded. After a Mi-

norGC, the eden and the from space are cleared, and all the

objects that survived in the to-space will have their age incre-

mented. After surviving a predefined number of MinorGCs,

objects are promoted to the old generation.

After a few cycles of MinorGC, the old generation will be

full and then MajorGC is triggered to free up the old gen-

eration space. Both minor and MajorGCs obtain tasks from

GCTaskQueue except that GCTaskManager prepares differ-

ent GC tasks for them. Among GC tasks, steal task happen

very often and it is placed in GCTaskQueue after normal GC

tasks . Steal task is needed as an attempt to balance the load

between GC threads GC threads that have fetched steal tasks

will try to steal work from other GC threads. When all GC

threads complete the parallel phase and suspend themselves,

the VM thread is woken up, entering the final synchroniza-
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Figure 2: Tail latency. The figures shows tail latencies due to

GC pauses. This experiment is run on 6 nodes cluster (3 Cassandra

servers + 3 Cassandra remote clients), and the JVMs use ParallelGC

algorithm.

tion phase. VM thread will resize the spaces based on the

feedback of recently completed GCs, and then it wakes up

the mutators and suspends itself until the next GC.

2.4 Tail Induced by GC

Let us consider the following scenario. When the appli-

cation receives the request, and if the code is written in

a managed language such as Java, the request is usually

converted from byte stream to an object (e.g. “R = new

Request(bytes)”) which can stall if the runtime is garbage-

collecting the heap [21–23, 27, 33, 34]. If not, the application

can continue to process the request. Figure 2 shows the re-

quests being stalled by Java garbage collection (GC) roughly

8% of the time due to other bulk requests that (de)allocate

memory intensively. Given this observation, it is hard to

guarantee extreme stable latencies in Java-based storage sys-

tems.

2.5 State of the Art

The last decade has witnessed many novel solutions pro-

posed to tame the tail latency problem, which we classify

into four general categories: GC algorithm advancement,

application-level modification, speculation, and replica se-

lection (Table 2). We review their pros and cons in four axes:

“application simplicity” implies no intrusive changes to the

application; “efficiency” denotes no extra load (i.e. no spec-

ulative backup requests); “reactivity” means rapid reaction

to latency perturbation in millisecond windows; and finally

“flexibility” indicates the adaptability of the systems under

various workloads (data size and throughput) changes.

GC-ALGORITHM ADVANCEMENT happens rarely be-

cause of the complexity. As depicted by Table 1, JVM of-

fered various GC algorithm to choose, each has its own de-

sign choices and caveats. For example, CMS suffers from

heap fragmentation problem; G1GC performs bad when

dealing with big objects allocation, it also has total pause

longer than ParallelGC under the same workload; ZGC and

App-Sim
plic

ity

Efficiency

Reactiv
ity

Flexibilit
y

GC advancement
√ √

— —

App. modification —
√ √ √

Speculation
√

—
√ √

Replica selection
√ √

—
√

MITMEM
√ √ √ √

Table 2: State of the art (§2.5 and §3.4). The table reviews

the pros and cons of four general solutions (1st column) in five axes

(1st row). MITMEM attempts to combine all the benefits.

Shenandoah add more load to the processing unit as it em-

ploys complex reference checking than other algorithms.

APPLICATION-LEVEL MODIFICATION re-architects

tail-prone applications with a better computation and data

management. For example, numerous key-value storage

designs have been proposed for reducing contention between

user and management operations or for handling workload

skew and cache inefficiencies [35–44]. As shown in Table

2, while it is efficient and reactive and does not change

resource-level policies, it requires application redesign and

does not cover contentions outside the application.

SPECULATIVE EXECUTION treats the underlying system

as unchangeable and simply sends a backup request (spec-

ulative retry) after some short amount of time has elapsed

[45–47]. Many user-level storages adopt speculation for its

simplicity and end-to-end coverage, but it causes extra load

(i.e. speculative retry after waiting for the Pth-percentile la-

tency will lead to (100−P)% backup requests [8]).

REPLICA SELECTION predicts ahead of time which

replicas can serve requests faster, often done in a black-box

way (ease of adoption) without knowing what is happening

inside the resource layers [48–50]. This requires detailed la-

tency monitoring and expensive prediction computation for

increasing accuracy. Most of the time, the prediction is only

refreshed sparsely (e.g. every few minutes) [51, 52]. As a re-

sult, it is not reactive to bursty contention that can (dis)appear

in sub-second intervals.

3 MITMEM

MITMEM (“Mit” stands for mitigating and “Mem” stands for

memory) is a Java Virtual Machine (JVM) extension with re-

quest cancellation and delay prediction mechanisms pertain-

ing to garbage collection (GC) pauses. JVM GC is a runtime

activity that frees objects no longer referenced. As objects in

the virtual address space are being reshuffled, all application

threads must be paused (aka. “Stop the World” GC). Dur-

ing this process, requests cannot be served, hence causing

long tail latencies. This affects many Java-based user-level

storage in a way that requires manual tuning such as in Cas-
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Figure 3: MITMEM-powered system. MITMEM will send

notification to the client if the predicted GC pause is longer than

the request deadline. The notification simply tells that the current

server is busy, then the client can redirect the request to a less-busy

server. In the other case, when the GC pause is predicted to be

very short or when the GC is almost done, MITMEM won’t send a

notification and it will add the request to the waiting queue which

will be processed once the application workers are awake.

sandra [53], HBase [54], Ignite [55], and potentially many

others.

Instead of attempting to minimize the impact of garbage

collector interventions, MITMEM transparently transforms

these interventions into a temporary node unavailability.

MITMEM allows the garbage collector to run normally, but it

will reply to all the incoming requests with a special excep-

tion message, Server-Busy. MITMEM sheds all incoming

requests during MajorGC based on fast-rejecting mechanism

design (Figure 3), which prevents STW from trapping those

requests.

The main advantages of using MITMEM instead of tuning

the garbage collector or manually handling the GC are that

MITMEM is straightforward to use as it requires no specific

configuration; and MITMEM is easy to integrate with any tar-

get system (e.g., MITMEM-powered Cassandra only needs

120 LOC). MITMEM provides custom JVM interfaces to

the run-time system (RTS) that enable tail-tolerance support

in data-parallel applications. Since MITMEM fast-rejecting

mechanism is implemented inside JVM itself as a native ex-

tension, the overhead is negligible. MITMEM is not a new

approach to garbage collection, but a new approach to deal-

ing with its performance impact in distributed systems.

While the literature in this area mostly focuses on optimiz-

ing GC [21–23, 27, 33, 34], MITMEM’s principle is differ-

ent: “let GC stops the world, but do not stop the universe.”

That is, MITMEM’s method can work with any stop-the-

world GC algorithms because its main functionality is can-

celling paused requests such that the higher-level distributed

storage can continue retrying the requests somewhere else

(i.e. do not stop “the universe”). Below we describe our

solution to two main challenges: how the runtime can send

cancellation notification when all applications and many run-

time threads are paused and how to predict GC pause delays.

3.1 Cancellation Mechanism

We describe several methods that we tried from a naive to

a more robust one. Our first try was modifying the Java

I/O library; within the network I/O path, Java library makes

a read()-like system call to the OS, which perhaps can be

wrapped around with request cancellation, but because this

call is done within the context of application threads, it will

be paused by safepoints [56]. Safepoint is a well-defined in-

ternal state inside the JVM. When all the threads are stopped

at safepoints, the JVM can safely reshuffle the heap and stack

such that the threads’ view of the memory remains consistent

when they leave the safepoint.

As cancellation via application thread is impossible, an-

other method we attempted was creating a runtime-level

thread similar to GC threads that can continue running even

when other threads are paused. A possibility is to find

the runtime-level networking stack and perform cancellation

there. However, we found that runtime threads have to park

as well when GC is running (because they also touch the

same virtual address area being shuffled). If we unpark run-

time threads, the OS will send a SIGSEGV signal and the

runtime would crash. This intricate complexity of a real run-

time such as JVM has been reported several times, such that

some work prefers a clean-slate but partial runtime rather

than extending a full-fledged JVM [21]. Fortunately, our

failed experiences above led us to a way around the com-

plexity.

We create a new runtime thread that does not have ref-

erences to the part of the address space being reshuffled

(outside the Java heap that contains application objects in-

cluding URequest and SocketImpl). Our thread must know

the sender’s file descriptor for sending cancellation notices,

but because this information resides in the Java heap (inside

SocketImpl), we modify the JVM to copy relevant informa-

tion that MITMEM needs and put them outside the Java heap.

Another job that this thread must perform is to read an ar-

riving request from the OS and check its deadline. Hence,

even when GC is running, our thread makes the reqrecv()

call and puts the request in a temporary buffer. If the request

should be cancelled (the remaining GC pause is longer than

the remaining deadline), it is deleted (so that the application

does not have to process it) and then a cancellation notice is

sent back. Otherwise, the request is forwarded to the appli-

cation; specifically, after GC unfreezes all the threads, our

URequest receive function (§3.5) will copy the request from

the temporary buffer to the user buffer.

3.2 GC Pause Prediction

JVM provides three GC algorithms, Parallel GC [18], G1GC

[17], and ZGC [20]. Albeit the implementation differences

such as the heap structure, levels of concurrency, and use

of compaction to reduce fragmentation, all of them run GC

in two phases: the mark phase, responsible for traversing
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through all the application objects and marking them as alive

or dead, and sweep phase, responsible for reclaiming space

used by dead objects. Furthermore, GC algorithms define a

set of “GC roots” used as starting points of the mark phase.

Each root branches to a graph of objects that will be tra-

versed by the GC workers. Live objects will be promoted to

another heap region (e.g. from new-generation to survivor

area) and the unreferenced ones marked as dead. The for-

mer involves copying of live objects from one region into

another while the latter executes complex operations such as

compacting/defragmenting certain areas of the heap.

Regardless of the implementation detail, we model GC ex-

ecution time as a linear relationship to the number of live ob-

jects in the object graphs. Others have modeled GC in a lin-

ear way as well [57] but they model when/how often GC will

take place, while we model how long every GC will pause.

Because copying is the main bottleneck, our linear model is:

Tgc =
Nliveobj × Tcopy

Ngcw

+ Tovh

Here, Tgc is the predicted delay, Nliveobj is the number

of live objects, Tcopy is the average copy time per object,

Ngcw is the number of GC workers, and Tovh is an addi-

tional constant overhead. As MITMEM has visibility on

Ngcw (a constant configuration value) and Nliveobj (after

the fast initial traversal), we only need to profile the val-

ues of Tcopy and Tovh, which are dependent on the mem-

ory speed and other environmental factors. We tried several

linear modeling algorithms such as RANSAC and OLS and

found that RANSAC leads to the highest precision in our

benchmarks. It successfully models Tcopy, which depends

on object sizes and memory copy speed, and Tovh, which de-

pends on some constant overhead, e.g. finding live/dead ob-

jects in mostly-static GC roots such as ClassLoader, System

Dictionary, JNI handles and Management Beans objects

graphs that might fluctuate in the beginning but will remain

stable as the application runs for some time.

MITMEM’s GC prediction is also not devoid of impreci-

sion. As often pointed out [58], GC execution time is hard

to precisely estimate due to specific implementation details.

For example, to predict Parallel GC (that is optimized for

throughput), the imprecision lies in the parallelism complex-

ity. Particularly for the mark phase, the whole process is

divided into parallel workers, each picks a job (object) from

a queue, analyzes the object, traverses down the graph, and

adds the newly traversed objects to the worker queues. As

the queues are unbalanced, task stealing can occur, which

complicates prediction because stealing involves complex

dependencies and synchronization operations.

Despite this imprecision, luckily MITMEM does not have

to consider a wide range of application behaviors. MITMEM

only needs to predict GC delays within the target applica-

Figure 4: MITMEM design (§3.3). The picture depicts five

important elements of MITMEM: (a) end-to-end request abstrac-

tion, (b) deadline information, (c) request cancellation, (d) resource

delay prediction, and (e) guided retry.

tion (e.g. the storage server), but not across different appli-

cations. In our case, we found that the memory usage pat-

tern of simple key-value (de)allocations leads to a more pre-

dictable GC time compared to the more complex behavior of

memory-intensive benchmarks.

3.3 Design

As mentioned in the introduction, it is fundamentally chal-

lenging to maintain all the benefits of the aforementioned

techniques if we attempt to solve the tail latency problem

only entirely in the application. With the MITMEM, both

application and runtime layer work hand in hand. Figure 4

illustrates MITMEM design, showing how a request flows

from client to runtime server. To achieve all the five goals in

Table 2, MITMEM consists of five essential elements.

A) AN END-TO-END request ABSTRACTION (Figure

4a) enables request abstraction on the runtime layer as what

can be seen by application. Currently, operating systems,

runtime and libraries are often oblivious to the end-to-end re-

quest context. They operate on abstractions such as streams,

packets and functions that are hard to map to the notion of

“user request” and its latency sensitivity. With the prevalence

of interactive services, user request should be a first-class

citizen. request acts as a unifying abstraction for scattered

resource layers.

B) DEADLINE AWARENESS (Figure 4b) is added to the re-

source layers through which request flows. The importance

of deadline information has been highlighted many times

[59–63] and deadline-aware resources have been proposed

such as in the TCP or block layer [30, 64, 65] but usually the

awareness is only contained within the layer. With request,

user’s deadline information can be simply added and auto-

matically forwarded to runtime layers. The request struc-

ture also contains the send time. We also envision a scenario

where client and server machines live in the same data cen-

ter (e.g. for data locality); data-center clock synchronization

has been solved to nanosecond level [66].

C) REQUEST CANCELLATION (Figure 4c) is now sup-

ported in the runtime layer. That is, when replicas are avail-

able, user-level storage can tag requests as cancellable such

that when the deadline cannot be met by runtime layer, the
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layer is given the liberty to cancel the request. The decision

is made based on the “remDL” ( the time that has elapsed since

the request was sent) and “predDelay”. The concept of can-

cellable tasks or requests is common in real-time community

[67–69], but has not been fully deployed in many standard

systems. Likewise, request cancellation is an essential mech-

anism that will notify applications that a particular resource

in the datapath is currently contended. Google also promoted

the efficiency of cancellable requests [8], but the article only

described cancellation that is done in a user-level file system,

while in our work, we advocate the runtime layer to be aware

of deadlines and capable of cancelling requests.

D) RESOURCE DELAY PREDICTION (Figure 4d) is now

built in the runtime layer for making a decision to serve or

cancel every arriving request. The decision is made based on

the request deadline and the current contention level (JVM’s

GC). The prediction ideally must be precise. Fortunately, a

high precision is possible because the predictor is built inside

the resource layer, hence has the full view of the contention

inside the resource (MITMEM is capable of measuring GC

duration).

E) GUIDED RETRY (Figure 4e) is now possible to be im-

plemented by the application. Unlike timeout-based specu-

lative retry that must wait for a certain time before sending

backup requests, with MITMEM, the application can trigger

retries as guided by the cancellation notification it receives

from one of the resources.

3.4 Goals

MITMEM design achieves all the goals in the following ways

(as summarized in Table 2). (1) The application remains sim-

ple because its job is straightforward: instantiate requests

and perform speculative retries upon receiving cancellation

notices. (2) Our approach is efficient because delayed re-

quests are cancelled before being served, hence no extra

load. (3) MITMEM has fast reactivity because the predic-

tors we build always check the current delay, hence capable

of adapting to millisecond burstiness. (4) The MITMEM-

powered system also achieve flexibility in terms of adapting

with workload changes because our rejection notification is

based on per request deadline and per GC pause prediction.

Before we proceed, we emphasize that MITMEM’s ob-

jective is to provide a more effective way of mitigating

contention in runtime resource layer. MITMEM’s notifica-

tion design has finer granularity compared to other solution

[21, 27, 70, 71] that also combat tail-latency problem in-

duced by GC. We acknowledge that there are other sources

of tail latencies (e.g. data skew, CPU and libraries). For this

reason, applications should still enable timeout-based specu-

lative retry to anticipate “unknown” root causes. In the eval-

uation we show that MITMEM-guided retries produce an ef-

fective outcome.

3.5 APIs

We extended JVM OpenJDK with a new URequest class and

its send/receive functions that wrap our custom system calls.

This class allows Java applications to inform resource lay-

ers, including the runtime itself, about request-level infor-

mation. For example, Java runtime now can drop requests

and send cancellation notice via the corresponding socket.

MITMEM’s APIs are straightforward as they are wrappers to

our modified system calls.

• Class URequest

This class contains the same fields as struct

urequest. This class was added to the Java SDK that

we modified.

• URequest.Send(OutputStream stream)

This function writes a request to the OutputStream

given as argument. The provided OutputStream

should be the one obtained by calling

Socket#getOutputStream() on the socket in

charge of sending replies to the client.

• URequest.Receive(InputStream stream)

In addition to receiving requests, this function plays

another important role—it needs to check if there are

requests that have been received (and not cancelled)

during GC activities. Remember that cancellations are

sent by our special non-blocked runtime thread. In or-

der to do so, the runtime thread must “steal” incom-

ing requests from the receiving socket while the ap-

plication is frozen. Otherwise, the runtime does not

know whether the arriving requests should be can-

celled or not (the deadline and cancellable informa-

tion is inside the request structure). Thus, when our

non-blocked runtime thread receives a request that

should not be cancelled, it puts it to a special tempo-

rary buffer. When the application threads awake and

call URequest.Receive(stream), this function first

checks if there are requests in this temporary buffer

and if so it returns the buffered request to the ap-

plication. The application then will perform more

URequest.Receive(stream) calls, which will read

future requests either from this temporary buffer or

from the network in case the buffer is empty.

3.6 Implementation

MITMEM is implemented in 1000 LOC in OpenJDK8. Our

changes are modular and did not alter the main code of the

platforms (e.g. the QoS code). For the application, we mod-

ify Cassandra v3.11.6 [72] only in 120 LOC, demonstrating

the non-intrusiveness of our approach. We use Cassandra

(written in Java) due to its popularity [73] and for showing

the impact of multi-layer contention.
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Figure 5: Tail-Latency CCDF on single node setup. The

figure shows that MITMEM’s line (green) reduces the tail-latency

up to 99%. We show the “Best” (no contention), MITMEM, and

“Raw” (no mitigation) lines.

4 Evaluation

First, we present our performance evaluation on a single and

six nodes cluster. And then, we evaluate the precision of our

gc-pause prediction.

4.1 Performance

We conducted our evaluation to prove that MITMEM shorten

the tail latency without introducing significant overhead.

We carried out two experiments, a single node setup and

a multi node cluster. The first experiment is done by in-

volving cassandra-stress tool. The cassandra-stress tool is a

Java-based stress testing utility for basic benchmarking and

load testing a Cassandra cluster. This tool support a heavy-

workload generator that can trigger MajorGC easily. There-

fore, the cassandra-stress tool is a perfect choice to be used

as heavy-workload client. In addition to that, we also have a

light-workload client. The latency measured in Figure 5 are

coming from the light-workload client. We use the heavy-

workload client to trigger MajorGC only. Thus, we can ob-

serve the impact of fast-rejecting mechanism against light-

workload client.

The second experiment is done in a six nodes cluster, half

used as client and half as server nodes. We use Emulab

d430 machine [74–76] that has 16 cores (32 logical), 64 GB

DRAM, and 1 Gbps network. The retry overhead (machine-

to-machine ping-pong) is only 120µs. We use Cassandra and

warm up the cluster to have the user’s data reside in memory.

Every key-value has three copies (the default configuration).

For the client workload, we use a microbenchmark where ev-

ery client node sends 10,000 requests per second. The exper-

iments are performed several times to ensure reproducibility.

For GC noises, we periodically send a large batch of non-

critical requests to trigger GC within the experiment (e.g.

mimicking a large database update or scan that is not latency
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Figure 6: Tail Latency CCDF on six-nodes cluster. The

figures show CCDF graphs of the client-perceived latency distri-

bution induced by JVM GC. We show the “Best” (no contention),

MITMEM, and “Raw” (no mitigation) lines.

sensitive, hence treated as regular, non-cancellable requests).

This noise is sufficient for showing GC pauses within Cas-

sandra.

We repeat our motivational experiment (§2.4) and com-

pare the “Raw” setup (no tail mitigation) with MITMEM. In

this configuration, we use 3 client nodes and 3 server nodes.

First, the “Best” line in Figure 6 shows the latency CCDF of

the client requests when there is no contention in the runtime

layer (JVM). The line is vertically straight around x=0.7ms,

the best-case scenario we should target. Second, the “Raw”

lines (with noise) in Figure 6 shows that the noise inflicts

long tail latencies to the user requests 5 % of the time com-

pared to the “Best” line. Finally, the MITMEM lines show

that our methods can quickly react to the contention at run-

time layer and eliminates 99% of the tail latencies caused by

JVM’s GC (the large gap between the MITMEM and “Raw”

lines).

We note that both in the “Best” and MITMEM lines, we

still observe a small <1% latency tail, caused by “unknown”

cases not covered by MITMEM (§3.4). For example, in the

Emulab testbed, we always observe 0.3–0.5% long latency

tail in a simple ping-pong workload, probably caused by net-

work contention.

Furthermore, results also show that MITMEM’s overhead

is negligible, as medians are very close between vanilla Cas-

sandra and MITMEM-powered Cassandra. These results

allow us to answer the research question by showing that

MITMEM substantially reduces not only the tail of the la-

tency distribution but also the overall request completion

time (roundtrip latency) with negligible overhead. In sum-

mary, regardless of the service size, enabling MITMEM sub-

stantially reduces not only the tail of the latency distribution

but also the ratio of the tail to the median, leading to a more

predictable latency profile. MITMEM’s overhead is negligi-

ble, and there is no throughput loss for the considered cases.
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Figure 7: MITMEM precision (§4.2). The figures show

CDFs of GC pause prediction errors (Derr).

4.2 Precision

To evaluate MITMEM’s precision when it comes to pre-

dicting gc-pauses, we chose 3 widely used Java benchmark

suites, SPECjvm2008, DaCapo, and Renaissance. To mea-

sure imprecision, similar as above, MITMEM predicts how

long every GC activity will run (Derr) and we also instru-

ment the JVM to measure the actual GC duration (Dreal).

For every benchmark, we run the experiments until it cap-

tures 1000 Derr data points.

Figure 7 shows the distribution of the Derr values. Every

figure shows the two modeling algorithms we used (§3.2),

RANSAC and OLS. As shown in Figure 7a-c, MITMEM

is not precise in predicting GC pauses in benchmarks with

complex memory usage, due to the reasons described before

(§3.2). Fortunately, as we target storage systems, we notice

that its memory usage pattern is not too complex (i.e. simple

key-value (de)allocation). For now, it is sufficient for MIT-

MEM to estimate under this simple pattern. Figure 7d shows

that with 1 MB of key-value (de)allocation per second with

random sizes from 0.1 to 1 KB, MITMEM is only imprecise

by +/−4ms in about 8% of the time with RANSAC.

5 Limitation and Discussion

We now summarize the limitations of MITMEM. First, MIT-

MEM relies on failover mechanism to exploit, hence the tar-

get system must have failover feature. Otherwise, applica-

tion level modification is needed to implement the feature so

that client can failover when receiving a server-busy notifi-

cation. Second, MITMEM only mitigates the pauses during

stop-the-world periods. Finally, MITMEM doesn’t consider

other source of contention (i.e. CPU and network) which

could be addressed by the future work as explained below.

MITMEM general design can be applied to other resource

layer (i.e. CPU, network, libraries, etc.). The stackable

design opens up a new possibility of achieving better tail-

latency management as each layer knows its current resource

contention status. The integrated rejection mechanism could

send a server-busy notification based on a certain degree

of contention on each resource layer. Therefore, combin-

ing MITMEM’s rejection on runtime layer with other rejec-

tion mechanism techniques on the other layer will provide

sufficient coverage, especially when major resource layers

(e.g. CPU/thread, memory, and disk management) adopt our

method in supporting prediction and cancellation.

6 Related Work

Runtime management overhead in managed languages is a

major source of tail latency that various works attempt to

mitigate. Most of the works in this space focus on optimiz-

ing the JVM GC algorithms and coordinating the GC timing

within the cluster. The novelity of MITMEM’s technique is

that it offers finer granularity of tail-tolerance mechanism.

MITMEM does not flag a certain node as unavailable, but

the ”unavailability” can dynamically change depending on

each request’s deadline. Thus, each request has its own per-

spective of the node status (busy or not-busy) relative to its

deadline. The summary of all related works are described

below.

Yak [21] says that Big Data systems built in Java suffer se-

vere GC issues due to the massive volume of objects created

to process input data. It proposes specialized heap reorgani-

zation for big data workloads, dividing the heap into control

(i.e., permanent) space and data (i.e., transient) space, im-

proving GC execution time by up to 50x. NumaGiC [23]

says that in NUMA environments GC performance is af-

fected by the many remote memory accesses while scanning

the reference graph. It designs a distributed GC processing

scheme that allows reference processing to be completed by

threads accessing that memory in a local fashion, improving

performance of classic GC algorithms up to 5.4x. Hotspot

PGC [34] says that ParallelGC performance is affected by

design choices that limit parallelism, such as unfairness in

mutex acquisitions, dynamic GC task assignments/stealing

and imperfect OS load balancing. It proposes a series of

modifications to solve these issues, such as re-designing the

work stealing algorithm and using GC thread affinity to im-

prove load balancing, improving ParallelGC execution time

up to 1.87x. NAPS [22] shows how badly throughtput-

oriented GC algorithms (e.g., ParallelGC) scale beyond eight

cores, identifying the lack of NUMA awareness and heavy

lock contention as the major bottlenecks. It modifies Paral-

lelGC by adding lock-free queues and favoring local mem-

ory accesses, resulting in a GC implementation that does not

degrade its performance when parallelized in up to 48 cores.

GCI [77] observes that GC is one of the major factors affect-

ing tail latency in modern cloud web services. It proposes a

load balancing component that routes requests to non mem-

ory pre-assured nodes and manages garbage collection exe-

cutions, improving p99.9 request latency by almost 2x. Tau-

rus [27] observes that, since in a distributed setting runtime

environments are unaware of each other, individual garbage

collections have a negative effect in latency-sensitive work-

loads. It proposes an holistic runtime system that coordi-

nates garbage collection (similar to other works [70, 71]) ex-
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ecutions among nodes, improving Cassandra p99.9 request

latency by 2x. ROLP [33] says that there are unpredictable

and unacceptably long tail latencies in Lucene, GraphChi,

and Cassandra since these systems allocate all objects in the

same space and rely heavily on object copying to promote

longer-lifetime objects. Theoretically, reductions of long tail

latencies are up to 85% for GraphChi, 51% for Lucene, and

69% for Cassandra. With that, it designs an application-code

profiler at runtime to help pretenuring gc algorithms such as

N2GC (made by the same author) to allocate objects with

similar-lifetime close to each other to reduce the GC pause.

It modifies OpenJDK8 by implementing the profiler and the

new pretenuring GC.

7 Conclusion

In this paper we propose and evaluate the MITMEM – Mit-

igating Millisecond Tail Latency with Fast-Rejecting GC-

Aware Mechanism. Instead of attempting to minimize the

impact of garbage collector interventions, MITMEM trans-

parently transforms these interventions into a temporary

node unavailability that is evaluated per request basis. The

novelity of MITMEM’s technique is that it offers finer granu-

larity of tail-tolerance mechanism. MITMEM does not flag a

certain node as unavailable, but the ”unavailability” can dy-

namically change depends on each request’s deadline. Thus,

each request has its own perspective of the node status (busy

or not-busy) relative to its deadline.

MITMEM allows the garbage collector to run normally,

but it will reject all the incoming requests with a special no-

tification, Server-Busy. MITMEM can shed incoming re-

quests during GC based on fast-rejecting mechanism design,

which prevents STW from trapping those requests. MIT-

MEM’s API is simple enough that most Java-based paral-

lel applications can implement it without introducing a bur-

den to the developer (e.g., adding 120 LOC to integrate with

Cassandra). Our experiments indicate that the MITMEM-

powered Cassandra successfully reduces the tail latency up

to 99%. In the future, we would like to perform a broader

evaluation of our approach. That includes combining MIT-

MEM’s rejection on runtime layer with other rejection mech-

anism techniques on other layers such as OS, network, and

library.
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