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Abstract

Low and stable latency is a critical key to the success of many

services, but variable load and resource sharing in a mod-

ern cloud environment introduces resource contention that in

turn increases the unpredictability of the systems which often

cause a ”tail latency problem.” As one of the main building-

blocks of a complex request-chain, understanding the I/O re-

quest becomes an important topic to help parallel storage

applications achieve performance predictability and to re-

duce the tail latency. This paper presents IONET, ML-based

per-I/O latency predictor capable of achieving 80-97% infer-

ence accuracy and sub-10µs inference overhead for each I/O.

IONET’s light-weight NN models demonstrate that this line

of research is practical and incorporating the models inside

operating systems for real-time decision-making is a feasible

solution to achieve latency stable systems.

1 Introduction

In today’s modern cloud environment, complexity has

reached unprecedented levels, leading to varying degrees of

performance instability at scale. Interactive services such as

search engines, email platforms, and social media networks

are particularly susceptible to these fluctuations. Therefore,

enhancing performance predictability has emerged as a cru-

cial step in advancing these systems. Given that I/O requests

serve as the fundamental building blocks of any service,

improving the predictability of I/O latency has become in-

creasingly paramount. Additionally, the availability of faster

SSDs continues to grow, exerting a dominant influence in the

storage market [4]. However, despite these advancements,

the internal complexity of SSDs persists, leaving I/O latency

predictability as an ongoing challenge.

The ongoing innovations in NAND technology spear-

headed by private companies have led to significant advance-

ments in modern flash devices. However, these devices lack

transparency in managing their internal resources effectively.

Background operations such as garbage collection, buffer

flushing, wear leveling, and read repairs pose a significant

threat to latency predictability [7, 14, 17, 18, 38, 39, 56, 57].

Moreover, with reports indicating that flash devices con-

tribute to over 19% of the total response time for certain

online applications [57], the urgency to explore additional

solutions becomes apparent.

There has been a significant amount of research con-

ducted to address the issue of unpredictable latency in SSDs.

One approach, referred to as the ”white-box” method, in-

volves restructuring the internal architecture of the device

[9, 20, 21, 24, 37, 49, 53, 56]. While this approach is pow-

erful, it may not be widely adopted by SSD vendors due to

various constraints. Another strategy, known as the ”gray-

box” approach, suggests making partial modifications at the

device level alongside changes at the operating system or ap-

plication level [31–33, 46, 57, 58]. However, the success of

this solution largely depends on the willingness of vendors

to modify the device interface, which may pose challenges in

implementation. Lastly, ”black-box” techniques aim to con-

ceal unpredictability without altering the underlying hard-

ware or its level of abstraction. Some of these techniques

focus on optimizing file systems or storage applications for

SSD usage [10, 26, 34–36, 40, 47, 54, 55], while others rely

on speculative execution [2, 3], which introduces additional

I/Os and latency due to waiting times.

In general, the problem of I/O performance instability at

scale raises many questions. How will a new workload per-

form on a large cluster of storage devices? How will the

workload performance change if the cluster deploys hetero-

geneous storage devices with complex tiering/caching (e.g.,

mixes of persistent memory, SSDs, and disks)? How does

scale affect performance variability? Finding answers is

more difficult today as storage devices are adding increas-

ing internal complexity. Most disks and SSDs are black-box

devices with a vast number of different models and internal

policies invisible to higher-level systems.

Many works extract specific internal characteristics of

disks [11, 13, 44, 45, 48, 52] or SSDs [6, 8, 12, 25, 27, 28, 30]

and further utilize them with analytic methods. These works

raise valuable ideas, but they stop short in answering the

questions above. Another line of work is the use of ma-

chine learning methods to predict workload performance,

[16, 22, 23, 29, 41, 42, 50], but they do so at a coarse-

grained, aggregate level (e.g., minute- or hourly-level perfor-

mance). We believe that achieving useful performance pre-
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dictions requires a much more fine-grained prediction and

modeling. That is, we would like to intervene on a request-

by-request basis and improve performance predictability not

just in aggregate, but for each individual request. With the

vast amount of I/O-level datasets that can be collected to-

day and the advances in machine learning methods and plat-

forms, we take up this challenge.

To this end, we introduce IONET, ML-based per-I/O la-

tency predictor capable of achieving 80-97% inference ac-

curacy and sub-10µs inference overhead for each I/O. With

IONET framework, we can build models of storage devices

in such a way that we can predict the latency of every I/O of

a full-workload running on a target storage cluster without

actually running it on the cluster. The are two biggest chal-

lenges for IONET project. First, how to provide the proof of

concept that ML-based per-IO latency prediction is feasible?

Second, how to get a vast collection of real-production I/O

traces? We collected the traces from our industry partners

under various NDAs. To the best of our knowledge, IONET

is the first one to introduce a framework for training I/O la-

tency predictor.

IONET introduces three technical contributions. First,

IONET provides a proof of concept that per-IO latency pre-

diction using machine learning techniques is feasible. Sec-

ond, IONET’s framework empowers new type of research

in the storage community such as “I/O performance predic-

tion”. Third, IONET’s evaluation provides a complete anal-

ysis of the training result that give many insights about how

the models behave across different traces and devices, and

also how to improve the model’s accuracy. By doing so,

we believe we can expand the storage community to include

modeling and theoretical people. Overall, we show that it is

plausible to adopt machine learning methods for operating

systems to learn black-box devices.

The rest of the paper is organized as follows: We first show

the vision of IONET project (Section §2). In Section §3 we

explain the worklflow of IONET project. Next, in Section §4

we write the details of our dataset. Then, in Section §5 and

§6, we explain the devices used to replay the traces and the

design of 4 sample models used in this project. Following

that, Section §8 explains our detailed evaluation. Finally, we

conclude with many interesting discussions at Section §9 and

§10 to explore in the future.

2 The Vision: The IONet Project

With machine learning methods, IONET project will enables

us to build models of storage devices in such as way that

we can predict the latency of every I/O of a full workload

running on a target storage cluster without running it on the

cluster. IONET achieves this by acquiring a vast collection

of training and test datasets, that we will build, maintain,

and publish the datasets to support this new research area.

ML methods Accuracy

Logistic regression 49-51%

Decision tree 45-69%

Random forest 16-84%

Linear, dense DNN 63-78%

A custom IONET DNN 93-99%

Table 1: Initial Benchmark of various ML-methods.

Among various machine learning techniques, the use of neural net-

works seems to be very promising with its high accuracy.

With the current datasets, IONET is able to predict the per-

I/O latency on individual and heterogeneous SSDs.

I/O LATENCY DATASETS (BENCHMARKS): “Benchmarks

shape a field” [43]. In the ML/visualization community, the

large ImageNet benchmarks have spurred research in image

recognition. Similarly, we would like to provide benchmarks

for fostering storage research in ML-based per-IO latency

prediction. In the storage community, workload benchmarks

are available in the form of traces [5, 23, 50], but to evalu-

ate whether a predictor is accurate, one must run the traces

through the predictor on many varieties of storage devices,

which not all researchers have access to. Thus, we will as-

semble a large benchmark for evaluating prediction models

(and make it publicly accessible) in the following way. First,

in terms of workloads, we will use the traces acquired from

our partner institutions; we name these traces Ti = 1..I

. Second, with help from our industry partners, we have a

collection of more than 20 heterogeneous SSD devices (and

plan to collect more); we label them Sj = 1..J . For each

combination of trace and device, we can evaluate latencies.

Thus, there will be I×J latency files (potentially >500 files)

that can be used to train and test per-IO latency predictors.

This way ML/storage researchers are not burdened to obtain

any T i or Sj , as they would simply pick any latency file to

test their predictor.

I/O MODELING AND PREDICTING VIA MACHINE

LEARNING: Given the datasets above, IONET enables us to

design and train an ML-based model that can be used in the

following way. When a new customer has a new workload

(e.g., “W99”) and would like to predict the latency of every

I/O in this workload when running on a popular SSD (e.g.,

“S2” that we already profiled), then we would give to

the customer our predictor model “M2” with parameters

that have been trained before (i.e., “M2” was trained with

running T1..I on S2). The customer can keep their workload

private (“W99 in this case) and does not have to purchase

S2, yet. They would simply input every I/O in “W99” to the

model “M2”, which will output for every I/O the predicted

latency (specifically a fine-grained latency range).
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To show a feasibility of predicting every I/O latency,

we start with a simple experiment: can a machine learning

method guess accurately whether the resulting latency will

fall below or above a latency threshold (e.g., 5ms)? In

other words, we start with a binary classification. Table 1

shows our initial effort in trying out many machine learning

methods, and a promising initial result can be seen in the

use of neural networks. Furthermore, in the next one year,

we will re-design the model aiming for a more realistic

non-binary classification (e.g., exponential latency buckets

of 0-1us, 2-4us, 4-8us, and so on). We will also train and

test the model across all the workloads and SSDs we have

(I×J profiles).

The complete vision is summarized below:

1. We collect as many raw IO traces (Ti = 1..X) as pos-

sible from our industry partners. For proprietary traces,

we will rerate or resize the trace (e.g. increase I/O in-

tensity by 2x, resize every I/O to be 2x larger, etc.)

2. We gain access to as many storage devices (Sj = 1..Y )

from various vendors.

3. Our team at UChicago will rerun every trace on every

device, and collect the block-level trace (e.g. with the

blktrace tool). For instance, with X = 20 and Y = 20,

we will have 400 “trace profiles”.

4. With approval from industry partners, we publish these

400 profiles and publish the traces in SNIA IOTTA [1].

The minimum goal is to reach a dataset with at least 1

billion I/Os.

5. The end goal, the community doesn’t have to rely on an

expensive storage device and hard-to-get I/O traces in

order to develop a better ML-based I/O predictor.

3 The Workflow

This is the workflow of how IONET’s pipeline can be used

by the community.

1. Cutting the raw traces

First, we have to determine the desired duration (e.g.

10 minutes). Then, IONET scripts can find a 10 minute

section from each of the raw traces that satisfy one

of these following options: the busiest (highest IOPS),

biggest bandwidth, largest I/O’s size (in average), and

most random write. Afterwards, we can cut the raw

traces based on the start-time and end-time of the de-

sired section.

2. Modifying (filter / rerate / resize) the traces

IONET has a trace-editor script that can do filtering,

rerating, and resizing the input traces. This is helpful to

create a diversification among the traces to match any

workload profile that we want. For example, we want

to train a model on a 100x bigger workload, we can

achieve that by resizing the traces to 100x.

Length (hour) Total IO (million)

Raw Azure 142 29.8

Raw BingI 75 39.6

Raw BingS 21 5.5

Raw Cosmos 120 25.1

Table 2: Characteristic of the raw traces acquired from

Microsoft cloud infrastructure (Section §4). These raw

traces will be cut to a shorter duration to reduce the training time.

3. Analyzing the modified-traces

IONET’s trace-analyzer can analyze the characteristics

of the given trace. The generated output are CDF of

Bandwidth, CDF of IOPS, and CDF of Interarrival time.

This is useful to check whether the modified-traces sat-

isfy the workload profile that we want.

4. Replaying the traces

A trace-replayer script will replay all input traces to

the given devices. The replayed-traces will record the

latency of every single I/O (including the latency of

multiple sub-I/Os that was splitted from a single big

I/O). Then we can analyze the replayed traces using

IONET’s trace-analyzer to get these following charac-

teristics: length of the traces (in seconds), I/O count,

IOPS, read vs write percentage, read throughput, write

thoughput, whisker plot of the read and write request,

bucketed read and write size, etc. Furthermore, we

called the replayed-trace as trace profile.

5. Parsing the traces

The goal of this process is to get a clean dataset for

training and testing the model. Given the replayed-

traces (profile) from the previous step, we use IONET

trace parsers to extract the desired input features that

match to each of the IONET models (detailed in Sec-

tion §6).

6. Training the models

Lastly, we train the IONET models against the datasets

that we have. The outputs are accuracy, FN, FP, TP, TN,

and training latency. Those output are easily adjustable

as needed. Finally, we can analyze the training result

with IONET’s graph-generator scripts. The scripts are

capable of parsing the training output and dynamically

generate thousands of graphs based on various combi-

nations of the TraceType, EditOption, DeviceName, and

ModelID. Those variables are detailed in Table 5.

4 The Data

We have four raw-traces from Microsoft, which are named

Azure, BingI, BingS, and Cosmos (detailed in Table 2). These

traces were collected by replaying production requests on a

private cluster that hosted the services purely for the sake

of trace collection. The requests were logged in real-time
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Azure BingI BingS Cosmos

IO Count 97016 102396 391375 167807

IOPS 161.70 170.67 652.29 304.22

R : W (%) 8 : 92 100 : 0 100 : 0 20 : 80

Total R (GB) 157.28 755.49 7690.93 2401.68

Total W (GB) 507.36 0 0 6182.95

Table 3: Characteristic of the chosen 10 minutes long

section of each raw traces. This is the characteristic of the

original (not rerated nor resized) traces section. Rerating and

resizing the traces will result in a different IOPS and different I/O

size. The R denotes read operation, while W is write operation.

Brand Size Type Code

nvme0n1 SG 128G PCIe MZVPV128HDGM

nvme1n1 IN 2T PCIe SSDPEDKE020T7

nvme2n1 SG 1.6T PCIe MZPLL1T6HEHP

nvme3n1 WD 1.6T PCIe HUSMR7616BHP301

sdd SG 2T SATA SSD-850-PRO

sde SG 128G PCIe MZHPV128HDGM

Table 4: Specifications of the devices. These are the devices

that we use to replay the selected traces. The SG is the abbreviation

of Samsung, IN is Intel, while WD is Western Digital.

in a small proportion of servers from the entire cluster. The

collected requests were then replayed on top of the servers in

a test cluster. The test cluster was setup in a such condition so

that the trace collection would not interfere with production

services. Microsoft trace logging system was used for the

instrumentation and trace collection at the file system, cache,

and SSD levels.

Furthermore, the raw traces have these following fields:

submission time, block offset, block size, read/write, and

most importantly, the I/O completion time. These raw traces

then get modified and cut to 10 minutes long sections based

on the highest IOPS. This trace modification process is part

of the IONET workflow as explained in the previous section.

For this experiment, we pick 10 minutes long section be-

cause that length is sufficient to train a model with low tran-

ing latency and considerably high accuracy. However, we

also believe that the longer the trace length used as the train-

ing data, the better the accuracy.

The details of the original (unedited) traces, that have

been cut to 10 minutes long, can be found in Table 3.

Based on the IOPS and the total byte (written and read),

we can categorize the traces into two different classes, light

and heavy. The Azure and BingI are classified into the

light-workload class, while the BingS and Cosmos are into

the heavy-workload class. In average, the heavy-workload

traces are 3x faster and 11x bigger than the light-workload

traces.

5 The Devices

We have six devices in total, which being used to replay the

selected traces (Table 3). In general, we categorize the de-

vices into two classes, consumer and enterprise class. The

enterprise-level devices (nvme1n1, nvme2n1, and nvme3n1) are

faster and generally have higher workload tolerance than the

consumer-level (nvme0n1, sdd, sde). The detail specifica-

tions of these devices are shown at Table 4.

6 The Models

These are the architecture and the intuition behind the four

IONET models that we have.

6.1 Model A

Overall theme of the Model-A is to be as light weight as

possible without sacrificing too much accuracy. This model

has three main input features with total dimension size of

17 where each dimension represents one-digit decimal num-

ber. Total dimension size along with its constituent input

feature dimension sizes are chosen to reflect the very light

weight nature of the model. These main input features are:

(a) the number of pending I/Os when an incoming I/O ar-

rives, (b) the set of historical latency values ranging from

the latency of most-recently completed I/O to that of second

most-recent, (c) the set of number of pending I/Os starting at

the time of second most-recently completed I/O and ending

at the time of most-recently completed I/O. The first feature

is chosen since there is usually a correlation between I/O la-

tency and the number of pending I/Os. The number of 4KB

pending pages are the chosen unit for the first feature as the

lowest granularity of striping inside SSDs is typically at the

page level. The first feature is represented by using three

decimal digits and hence occupies three dimensions of the

seventeen dimensional input feature vector.

Recording small amount of historical information about

latency values and number of pending IO sizes can be helpful

at understanding the internal operations and busyness of the

SSD drive. Having a long delay without a lot of pending I/Os

might indicate internal contention due to device-level activ-

ities such as GC, internal flushing, or wear leveling. Thus

that is why these variables are incorporated into the model

as second and third feature. In the Model-A, the historical

information in second and third feature only looks up to in-

formation of last two I/Os, reflecting the very light weight

theme of this model. The second feature has 2 elements in

it (i.e latency of most-recently completed I/O and latency of

second most-recently completed I/O) and each of these ele-

ments in µs are represented by using 4 decimal digits which

in total occupies eight dimensions of the seventeen dimen-

sional input feature vector. Similar to second feature, third
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Figure 1: Neural Network Architecture of Model A. Explained in Section §6.1

Figure 2: Neural Network Architecture of Model B. Explained in Section §6.2

feature has also 2 elements in it (i.e the number of pending

I/Os at the time when second most recently completed I/O

arrived and the number of pending I/Os at the time when

most recently completed I/O arrived). However these two

elements are formatted using 3 decimal digits each and in to-

tal makes up the remaining six dimensions of the seventeen

dimensional input feature vector [15].

In general, decimal digit based representation of the input

feature vector intends to achieve balance between inference

time and accuracy. Using a input representation that is based

on binary digits (or any other digit systems that has lower

base than that of decimal) would result in larger input di-

mension and hence larger number of corresponding neurons

in machine learning model which in return increases the in-

ference time. On the other hand directly using numbers as

inputs without dividing them into smaller decimal digit fea-

tures, or using digit systems that has larger base than that of

decimal can result in a harder training/learning process.

Just like the very light design choices made in the input

features and their formatting, machine learning architecture

used in this model also tries to accomplish that without sacri-

ficing too much accuracy by utilizing a fully-connected neu-

ral network model with only three layers. First the raw infor-

mation from the block layer is preprocessed with optimized

O(1) preprocessing overhead to create the 17 dimensional in-

put feature vector described above. The resultant inputs are

send to the input layer with 17 neurons. The input layer is

followed by the hidden layer with 128 neurons and reLU ac-

tivation function. The result obtained from the hidden layer

is passed through the output layer with 2 neurons and linear

activation function. The final output is converted to a binary

decision using the argmax operator.

6.2 Model B

Model-B has a slightly less light weight design than Model-A

does, but it still prioritizes lightness over accuracy. Reflect-

ing this, Input vector of Model-B has total dimension size of

24 with three main input features that are same as Model-A

but with the historical information in second and third fea-

ture extending up to the third most recent I/O. Thus Model-B

utilizes larger window of historical information compared to

that of Model-A. The size contributions of each feature in

Model-B are as follows: the first feature is represented by

3 decimal digits and makes up the three dimensions of the
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Figure 3: Neural Network Architecture of Model C. Explained in Section §6.3

24 dimensional input feature vector, the second feature has

three elements in it (i.e latency of most-recently completed

I/O, ... and latency of third most-recently completed I/O)

and each are represented by 4 decimal digits, forming the

12 (4x3) dimensions of the total; finally the third feature has

also three elements in it (i.e the number of pending I/Os at

the time when third most recently completed I/O arrived, ...

and the number of pending I/Os at the time when most re-

cently completed I/O arrived) and each are represented by 3

decimal digits, making up the remaining 9 (3x3) dimensions.

Similar to machine learning architecture used in Model-A,

Model-B also uses a fully-connected neural network model

with three layers. After raw inputs are reprocessed and

formed in to the the 24 dimensional input feature vector, they

are send to the input layer with 24 neurons. Following the

input layer comes hidden layer with 256 neurons and reLU

activation function. This hidden layer has larger number of

neurons compared to that of Model-A to provide more infor-

mation processing power. The last layer in the model is the

output layer and it has 2 neurons and linear activation func-

tion. The binary decision is obtained by applying argmax

operator to the output.

6.3 Model C

This model relaxes the restriction on lightness further and

puts slightly more emphasize on the accuracy over lightness.

Model-C follows the same feature structure as that of Model-A

and Model-B but with a larger window of historical infor-

mation in the second and third feature, extending up to the

fourth most recent I/O.

In general models A to D, explore the trade off between

accuracy and light weightiness of the model by changing

number of input feature dimensions in the way of present-

ing more or less historical IO information, and by utilizing

neural network architectures with various number of neurons

and layers. Recurring pattern here is if a model is aiming for

a high accuracies it tends to use a lot of historical I/O infor-

mation along with heavier neural network model that have

large number of layers and neurons. On the other hand the

model that is aiming for lightness utilizes as few historical

I/O information as possible with a very light network that

has very few layers and nodes.

Input vector of Model-C has total dimension size of 31.

The composition of this dimension size is as follows: 3 dec-

imal digits are used to represent the first feature and hence it

contributes three dimensions to the total size, the second and

third feature utilizes historical information up to the fourth

most recent I/O and hence they both include 4 I/0 elements

(i.e latency of most-recently completed I/O, ... and latency

of fourth most-recently completed I/O for the second fea-

ture; and the number of pending I/Os at the time when fourth

most recently completed I/O arrived, ... and the number of

pending I/Os at the time when most recently completed I/O

arrived for the third feature) and each element in the sec-

ond feature is represented by 4 decimal digits, contributing

the next 16 (4x4) dimensions and each element in the third

feature is represented by 3 decimal digits, contributing the

remaining 12 (4x3) dimensions.

This model uses fully-connected neural network with four

layers and these layers are: input layer with 31 neurons, two

hidden layers with 256 neurons and reLU activation func-

tion, and finally output layer with 2 neurons and linear ac-

tivation function. Raw inputs are preprocessed to form the

31 dimensional input feature vector, before entering into the

input layer. Argmax operator is used to obtain the binary

decision.
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Figure 4: Neural Network Architecture of Model D. Explained in §6.4

6.4 Model D

This model is accuracy oriented heavy model with a large

inference time. Following the general trend, it has the same

input features as the other models but historical information

in the second and third features extend up to the tenth most

recent I/O. Thus Model-D utilizes the largest window of his-

torical information among all other models, making it the

most feature rich model which in return contributes the heav-

iness of the model and negatively impacts the inference time.

It‘s input feature vector has 73 dimensions with following

size distribution: first feature contributing 3 dimensions to

the total with its 3 digit encoded representation, both sec-

ond and third features contain 10 historical I/O information

with second feature using 4 decimal digit based representa-

tion and third feature using 3 decimal digit based representa-

tion, making up the remaining 70 (3x10 + 4x10) dimensions.

The Model-D utilizes relatively heavy neural network with

large number of layers and neurons. Especially, it has the

largest number of hidden layers and neurons compared to

that of other models. This provides Model-D with more pro-

cessing power but further increases the inference time. More

specifically, Model-D has the following machine learning ar-

chitecture: It has one input layer with 73 neurons, three hid-

den layers with 256, 512, 256 neurons respectively, each

with reLU activation function and one output layer with 2

neurons. Input feature vector is obtained by preprocessing

the raw inputs and final binary decision is obtained by using

the argmax operator.

Values

ModelID [Model-A, Model-B, Model-C, Model-D ]

TraceType [Azure, BingI, BingS, Cosmos ]

DeviceName [nvme0n1, nvme1n1, nvme2n1, nvme3n1,

sdd, sde ]

EditOption [rerated-10x, rerated-100x,

resized-10x, resized-100x ]

Table 5: All possible values of the experiment variables.

The evaluation at Section §8 explains the relation between these

variables.

7 The Setup

The experiment is run on a machine which has 2.6GHz 18-

core (36-thread) Intel i9-7980XE CPU with 128GB DRAM

(no accelerators). Moreover, all devices have been used for

months with many workloads that reach the devices’ full ca-

pacities, hence mimicking devices in the field. Furthermore,

these are four variables that we used to vary our experiment:

1. TraceType: indicates which trace that we use as the in-

put dataset. All traces are explained in Section §4.

2. DeviceName: shows which device that we use to replay

the traces. All devices are detailed in Section §5.

3. ModelID: identifies which model that we use. All mod-

els are described in Section §6.

4. EditOption: points out the type of editing that was done

on the input trace. The unedited trace is identified as

original trace.

The values of these four variables are shown in Table 5.
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When analyzing the date, we will use those variables in the

x-axis. The y-axis will be the numerical data, such as ac-

curacy, False Positive Rate/FPR, and training latency. In to-

tal, the script generates 416 2D-bar graphs for each y-value.

However, we can’t include all the graph in the Section §8;

and WLOG, we carefully pick the graph that represent the

general trends. Therefore, for completeness, all figures in

Section §8 always include the combination of the variables

where the data was taken from.

8 Results

We analyze the result based on all possible combination of x-

axis and y-axis variations as explained in Section §7. There

are four possible variables (Table 5) for the x-axis which are

EditOption, TraceType, ModelID, and DeviceName. Each of

the x-axis has these three possible y-axis values, acuracy,

FPR (False Positive Rate), and training latency. In gen-

eral, there are two type of bar graph, 2D bar graph and 3D

bar graph. We explain our hyphotheses of the graph’s trend

by referring to all quantitative data that we have, including

the extra data/measurement that we acquire during the trace-

replaying process and the training process.

8.1 Two-Dimensional Analysis

Below are the analysis of our experiments in the form of 2D

bar graph.

8.1.1 Accuracy across Different EditOption

Editing (resizing/rerating) the traces in Figure 5 increase the

accuracy. This trend is closely related to the accuracy of

the original (unedited) trace and the device that we use.

When the original accuracy is low (< 90%), the edited (re-

sized/rerated) traces will likely increase the accuracy. How-

ever, when the original accuracy is already high (>90%),

rerating/resizing the traces will less likely increase the accu-

racy but rather decrease it. In addition, the device nvme0n1

on this experiment is not overloaded by the workload, thus

rerating/resizing the traces will have a positive impact to-

wards the accuracy. The overloaded device can be verified

from its average I/O latency that is more than 300x higher

than the average I/O latency of the unedited trace.

8.1.2 FPR across Different EditOption

Based on Figure 6, we can see that the edited (re-

sized/rerated) traces have less FPR (False Positive Rate)

compared to the original (unedited) trace. In addition, the

bigger the resize/rerate factor, the lower the FPR. The reason

behind it is that the original (unedited) trace is too light for

this device. Thus, increasing the workload’s intensity and

size (by rerating/resizing) will push the device to achieve its

optimal performance and better predictability (low FPR).

8.1.3 Training Latency across Different Edit-Option

Figure 7, we can see that rerating/resizing the traces are

generally have higher training latency than the original

(unedited) trace. Furthermore, the resized-100x has high-

est training time than the other edit options because resizing

to 100x generates much larger dataset (approximately about

4 times bigger).

8.1.4 Accuracy across Different DeviceName

We can see from Figure 8 that the consumer-level de-

vices (nvme0n1, sdd, and sde) have higher accuracy com-

pared to the enterprise-level devices (nvme1n1, nvme2n1, and

nvme3n1). The reason is that the resized Azure trace is still

too light for the enterprise-level devices, thus they are in the

suboptimal condition that make it hard to predict. In other

words, the accuracy of the enterprise-level devices can be

improved by using more intense workload. Regarding the

accuracy of the consumer-level devices, the device nvme0n1

has the highest accuracy because the resize factor is just

right (not too light nor too heavy) such that the device could

achieve its optimal performance.

8.1.5 FPR across Different DeviceName

The general trend at Figure 9 shows that enterprise-level

devices have higher FPR than the consumer-level devices.

This is due to the fact that the consumer-level devices could

8
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EditOption =resized-100x,

TraceType =Azure
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Figure 9: FPR across Device-

Name. ModelID =Model-C,

EditOption =rerated-100x,

TraceType =Azure
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Figure 10: Training latency across Devi-

ceName. ModelID =Model-C, EditOption

=resized-100x, TraceType =Azure
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ModelID. TraceType =Azure,

EditOption =resized-100x,

DeviceName =sde
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ModelID. TraceType =Azure,

EditOption =resized-10x,

DeviceName =sdd
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Figure 13: Training latency across ModelID.

TraceType =Azure, EditOption =resized-10x,

DeviceName =sde

achieve better (more optimal) performance on the current

workload (rerated-100x traces). On the other hand, cur-

rently, the enterprise-level devices are in the suboptimal con-

dition and require more intense workload to increase their

predictability. Therefore, the enterprise-level devices have a

higher FPR (less accuracy) than the consumer-level devices.

8.1.6 Training Latency across Different DeviceName

Figure 10 shows that the training latency is not affected by

the type of the devices. This is due to the main resources

being consumed during the training process are the process-

ing units (CPU and GPU). Since all devices (SSDs) are co-

located on the same machine; thus, the training latency of

each device is similar because they use the same processing

units.

8.1.7 Accuracy across Different ModelID

Figure 11 shows that the accuracy correlates highly with the

complexity of the models. The more complex the model, the

higher the accuracy. As detailed in the Section §6, the com-

plexity of the models are gradually increasing from Model-A

(has 17 input features) to Model-D (has 73 input features).

Therefore, Model-D as the heaviest model achieves better ac-

curacy than the others as it can accommodate more historical

information of the I/O traces.

8.1.8 FPR across Different ModelID

Figure 12 shows that the FPR correlates highly with the

complexity of the models. As detailed in the Section §6,

the complexity of the models are gradually increasing from

Model-A to Model-D. Therefore, Model-D as the heaviest

model achieves better accuracy (smaller FPR) than others.

8.1.9 Training Latency across Different ModelID

Figure 13 depicts that the more complex the model, the

higher the training latency. Thus, Model-D has the highest

training latency because it is the most complex (heaviest)

model as explained in in the Section §6. On the other hand,

Model-A as the lightest model with only 17 input features

achieves the shortest training time.

8.1.10 Accuracy across Different TraceType

Based on Figure 14, BingS and Cosmos have less accuracy

compared to the Azure and BingI because the device (sde)

was overloaded by BingS and Cosmos traces. Without any

rerate/resize, BingS and Cosmos are categorized as heavy-

workloads traces. Given the fact that the unedited version

of BingS and Cosmos traces are already bigger and more in-

tense, resizing the traces to 100x make the BingS and Cosmos

became a super-heavy workload which easily overload the

device sde.
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Type. ModelID =Model-C,

EditOption =rerated-10x,

DeviceName =nvme3n1
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Type. ModelID =Model-C, EditOption

=resized-100x, DeviceName =nvme2n1
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Figure 17: Accuracy across different DeviceName and EditOption. ModelID =Model-D, TraceType =Azure

8.1.11 FPR across Different TraceType

Figure 15 shows that light-workload traces (Azure and

BingI) have higher FPR (lower accuracy) than heavy-

workload traces BingS and Cosmos. In this experiment, we

use nvme3n1 which is an enterprise level device. Azure and

BingI traces are too light for nvme3n1 so BingS and Cosmos

traces (which fall into the heavy-workload category) are able

to push the device to give better performance. Thus they have

lower FPR and can better predict device behavior.

8.1.12 Training Latency across Different TraceType

As shown in Figure 16, BingS has the longest training latency

because BingS trace has the highest number of IO than the

others, thus it needs longer training time. Referring to the

Table 3, the IO count of BingS = 391375; Cosmos = 167807;

BingI = 102396; and Azure = 97016. In general, the more

the IO, the longer the training latency.

8.2 Three-Dimensional Analysis

Below are the analysis of our experiments in the form of 3D

bar graph.

8.2.1 Accuracy across Different DeviceName and Edit-

Option

Figure 17 shows that the rerated or resized traces lead to a

better accuracy regardless of the device that we use because

the the heavier the workload, the better the accuracy. That

correlation holds as long as the device doesn’t get overloaded

by the workload.

8.2.2 Accuracy across Different EditOption and Trace-

Type

The trends on the Figure 18 are determined by the accuracy

of the original traces. When the original accuracy is low

(< 90%), the edited (resized/rerated) traces will likely have

better accuracy. However, when the original accuracy is al-

ready high (>90%), rerating/resizing the trace will less likely

increase the accuracy but rather decrease it as shown by the

bar chart at BingI and Cosmos.

8.2.3 Accuracy across Different ModelID and Edit-

Option

Based on Figure 19, the original (unedited) trace has less

accuracy compared to the edited (rerated/resized) traces. The

higher the rerate/resize factor, the higher the accuracy as long

as the device doesn’t get overloaded. The overloaded de-

vice can be verified from its average I/O latency that is more

than 300x higher than the average I/O latency of the unedited

trace.

8.2.4 Accuracy across Different ModelID and Device-

Name

The general trend on Figure 20 shows that enterprise-level

devices are harder to predict than the consumer-level devices.

The easiest device to predict is device nvme0n1, while de-

vice nvme1n1 is the hardest one. This is due to the fact that
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Figure 18: Accuracy across different EditOption and TraceType. ModelID =Model-D, DeviceName =nvme0n1
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Figure 19: Accuracy across different ModelID and EditOption. TraceType =Azure, DeviceName =nvme0n1
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Figure 20: Accuracy across different ModelID and DeviceName. EditOption =resized-100x, TraceType =Azure

the consumer-level devices achieve optimal performance on

the current edited traces (resized-100x). On the other hand,

currently, the enterprise-level devices are in the suboptimal

condition, thus it requires more intense workload to improve

the accuracy.

8.2.5 Accuracy across Different ModelID and Trace-

Type

Based on the datasets’ characteristics, here are the average

latency of the traces used in the experiment at Figure 21;

Azure = 0.12 ms; BingI = 0.22 ms; BingS = 0.88 ms; and

Cosmos = 51.76 ms. It shows that Cosmos average latency is

much higher than others which is a strong indication that the

device (sde) is overloaded. Since the device predictability

will decrease as the device get overloaded, the Cosmos accu-

racy achieves far less accuracy than others.

8.2.6 Accuracy across Different TraceType and Device-

Name

From Figure 22, we can see that the light-workload traces

(Azure and BingI) running on the consumer-level devices

(nvme0n1, sdd, and sde) have higher accuracy compared

to other traces on any devices. The reason is that the

rerate/resize factor on those traces are just enough such that

the consumer-level devices can run optimally. In addition,

the average accuracy at the enterprise-level devices could not

reach as high accuracy as the prior case because the traces

are either too light or too heavy. Referring to the input

datasets’ characteristics, the average latency of BingS and

Cosmos traces on device sde are 156 ms and 4747 ms, while

the average latency of Azure and BingI traces on the same

device are only 5 ms and 2 ms respectively. Based on those

numbers, we can conclude that BingS and Cosmos traces are

overloading the device. Since the model accuracy will de-
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Figure 21: Accuracy across different ModelID and TraceType. EditOption =resized-10x, DeviceName =sde
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Figure 22: Accuracy across different TraceType and DeviceName. EditOption =resized-100x, ModelID =Model-B
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Figure 23: FPR across different DeviceName and TraceType. EditOption =original, ModelID =Model-D

crease as the device get overloaded, the use of BingS and

Cosmos traces on this experiment will cause the model to get

less accuracy.

8.2.7 FPR across Different DeviceName and TraceType

From Figure 23, we can see that BingS tends to have higher

FPR (less accuracy) compared to other traces. Given the

fact that the original (unedited) version of BingS trace is

already heavy (3.5x more I/O than the other traces), rerat-

ing/resizing it to 100x will cause the device to get overloaded

easily. Since an overloaded device tends to have a poor pre-

dictability, the FPR of BingS trace is expected to be higher

than the other traces.

8.2.8 FPR across Different ModelID and DeviceName

Figure 24 depicts the general trend that the enterprise-level

devices tend to have higher FPR and it is harder to pre-

dict than the consumer-level devices. The reason is the

enterprise-level devices require heavier workload to achieve

optimal performance. In this case, the resized BingI is still

too light for the enterprise-level devices; thus the devices

perform in a suboptimal condition which make the predic-

tion less accurate (high FPR).

8.2.9 FPR across Different EditOption and Device-

Name

Figure 25 shows that the rerated/resized by a factor of 100

tends to result in a lower FPR regardless of the device that

we use. Since the workload intensity is closely correlated

with the predictability of the device, the more intense the

workload, the better the accuracy. Furthermore, the edited

traces on Consumer-level devices tend to get a lower FPR

regardless of the rerate/resize factor because the device pre-

dictability increases on a heavier workload. Meanwhile, the

enterprise-level devices in general are in the suboptimal con-
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Figure 24: FPR across different ModelID and DeviceName. EditOption =resized-100x, TraceType =BingI
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Figure 25: FPR across different EditOption and DeviceName. ModelID =Model-A, TraceType =BingS
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Figure 26: FPR across different ModelID and EditOption. TraceType =Azure, DeviceName =nvme0n1

dition, thus they require more intense workloads to improve

the accuracy.

8.2.10 FPR across Different ModelID and EditOption

Based on Figure 26, Model-D tends to get smaller FPR (bet-

ter accuracy) compared to other models. This is because

Model-D is the heaviest model with 73 input features (which

can accommodate more historical information of the I/O

traces). Moreover, the original (unedited) trace tends to

have higher FPR compared to the edited (rerated/resized) and

resizing/rerating the traces to 100x tends to result in a lower

FPR regardless of the model because the heavier the work-

load, the better the device predictability, hence the higher the

accuracy as long as the device does not get overloaded. Over-

loaded devices can be detected with an average I/O latency

that is more than 300x higher than the average I/O latency of

the unedited trace.

8.2.11 FPR across Different EditOption and TraceType

The trends on Figure 27 are determined by the FPR of the

original bar. When the original FPR is high (>10%), edit-

ing (resizing/rerating) the traces will likely decrease its FPR.

Meanwhile, when the original accuracy is low (<10%),

rerating/resizing the traces will likely increase the FPR as

shown by the bar chart at Azure and BingI.

8.2.12 FPR across Different ModelID and TraceType

Figure 28 depicts that Cosmos FPR is higher (less accuracy)

than the others. Based on the dataset characteristics, here

are the average latency of the traces used in this experiment;

Azure = 0.12 ms; BingI = 0.22 ms; BingS = 0.88 ms; and

Cosmos = 51.76 ms. It shows that Cosmos average latency is

much higher than others. In other words, the Cosmos trace

overloads the device nvme1n1 which then cause a hard-to-

predict behavior. Furthermore, the FPR correlates highly
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Figure 27: FPR across different EditOption and TraceType. ModelID =Model-B, DeviceName =nvme1n1
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Figure 28: FPR across different ModelID and TraceType. EditOption =resized-10x, DeviceName =nvme1n1
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Figure 29: Training latency across different ModelID and TraceType. EditOption =resized-100x, DeviceName =sdd

with the complexity of the model. As detailed in the Sec-

tion §6, the complexity of the models is gradually increasing

from Model-A to Model-D. Thus, the Model-D as the heaviest

model achieves better accuracy (smaller FPR) than others.

8.2.13 Training Latency across Different ModelID and

TraceType

Based on Figure 29, Model-D has the highest training latency

because it is the most complex (heaviest) model with 73 in-

put features. As explained in the Section §6, Model-A is

the lightest model with only 17 input features so it has the

shortest training time. Moreover, the heavy-workload traces

(BingS and Cosmos) tend to have higher training time since

they generate bigger dataset (4 times bigger than the light-

workload traces).

8.2.14 Training Latency across Different DeviceName

and TraceType

Based on Figure 30, the training latency of BingS bar-cluster

is the highest because BingS has the highest number of IO

(Table 3). In general, the training latency will likely decrease

when there is less IO. In addition, the training latency of a

certain TraceType is similar in all devices because the de-

vices does not introduce major resource contention during

the training.

8.2.15 Training Latency across Different DeviceName

and EditOption

Based on Figure 31, we can see that the resized-100x traces

need longer training time because they generate much larger

dataset (4x more than the other EditOption). Meanwhile,

the other edit options have similar training latency because

they use similar size datasets.
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Figure 30: Training latency across different DeviceName and TraceType. EditOption =rerated-10x, ModelID =Model-B
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Figure 31: Training latency across different DeviceName and EditOption. ModelID =Model-A, TraceType =BingS
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Figure 32: Training latency across different EditOption and TraceType. ModelID =Model-B, DeviceName =nvme0n1

8.2.16 Training Latency across Different EditOption

and TraceType

Figure 32 shows that the training latency increases when the

trace is resized-100x. The reason is that the dataset’s size

increases (4x bigger) when we resize the trace by 100. In

addition, BingS has the highest number of IO (Table 3), thus

it needs longer training time. And, the training latency will

more likely decrease when the IO count becomes smaller.

8.2.17 Training Latency across Different ModelID and

EditOption

Figure 33 depicts that the training latency will be higher

when the model has higher complexity because the more

complex the model, the more processing/computation need

to be done to compute the neurons’ weight. In addition, we

can see that the resized-100x trace needs longer training

time because it generates much larger dataset (4x bigger).

8.2.18 Training Latency across Different ModelID and

DeviceName

Based on Figure 34, the type of the devices doesn’t provide

much difference to the training latency. Therefore, the bar-

cluster per DeviceName has similar trends.

9 Related Work

One of the main factors of the tail latency problem is the un-

predictability of the systems in a modern cloud environment.

Currently, there has been a lot of research on the topic of

unpredictable latency on SSDs. Multiple studies show how

to reduce SSD latency by utilizing internal characteristics of

the disks using an analytics method. The difference between

IONet and other related research is that IONet framework

allows us to model storage devices in such a way that we
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Figure 33: Training latency across different ModelID and EditOption. TraceType =Azure, DeviceName =nvme3n1
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Figure 34: Training latency across different ModelID and DeviceName. EditOption =resized-100x, TraceType =Azure

can predict the latency of every I / O of a full workload run-

ning on a target storage cluster without actually running it

on the cluster. IONet also only causes very little inference

overhead thus it is feasible to integrate the models inside op-

erating systems. Below are the summaries of related works

of this paper.

Rails [47] introduces an approach based on redundancy

that physically separates reads from writes to achieve read-

only performance in the presence of writes. It says that

SSDs frequently block in the presence of writes, exceed-

ing hard-drive latency and leading to unpredictable perfor-

mance. The proposed solution eliminates the high latencies,

therefore providing read-only response time that is low and

predictable. FlashShare [57] says that replacing the stor-

age devices of servers with Ultra-Low-Latency (ULL) SSDs

does not typically reduce the latency of I/O services, espe-

cially when co-running multiple applications. It proposes

a holistic cross-stack approach, which can significantly re-

duce I/O interferences among co-running applications at a

server without any change in applications. TTFlash [56]

describes a garbage collection system that eliminates GC-

induced tail latencies by circumventing GC-blocked I/Os. It

ensures that the GC is only 1.0 to 2.6x slower than the no-

GC case, while a base approach suffers from 5–138x GC-

induced slowdowns. Harmonia [33], similar with ttFlash,

proposes a Global Garbage Collection (GGC) mechanism

using an approach to improve response times and reduce per-

formance variability for a RAID array of SSDs. It states that

the frequency of garbage collection (GC) activity is directly

correlated with the pattern, frequency, and volume of write

requests, and scheduling of GC is controlled by logic internal

to the SSD.

KAML [20] states that modern solid state drives (SSDs)

do not need to restrict host programs to conventional block

I/O interfaces, leading to under-optimal performance and

under-usage of resources. It presents the key-addressable,

multi-log SSD with a key-value interface that uses a novel

multi-log architecture and stores data as variable-sized

records rather than fixed-sized sectors. The results show that

KAML improves the performance of online transaction pro-

cessing (OLTP) workloads by 1.1x - 4.0x, and NoSQL key-

value store applications by 1.1x - 3.0x. Swan [26] says that

the main source of performance degradation is garbage col-

lection (GC). It proposes a solution that can reduce the per-

formance interference caused by GC at SSD-level and AFA

software-level. This approach ensures the storage bandwidth

always matches the full network performance without being

interfered by AFA-level GC. Z-Map [51] designs a novel

space management and address mapping scheme for flash

which manages flash space at granularity of Zone (multi-

ple numbers of flash blocks). It classifies data before it is

permanently stored into Flash memory thus isolating dif-

ferent workloads and reducing garbage collection overhead.

Gauge [19] introduces a data-driven diagnostic tool for ex-

ploring the latent space of supercomputing job features, un-

derstanding behaviors of clusters of jobs, and interpreting

I/O bottlenecks. Gauge can detect families of applications

and spot strange I/O behavior that may require further fine-
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tuning and optimization of these applications, hardware pro-

visioning, or further investigation. Gauge provides novel in-

formation that leads to new insights, but it still requires guid-

ance from a domain expert.

10 Conclusion

In this paper, we introduce IONET: ML-based per-I/O la-

tency predictor capable of achieving 80-97% inference accu-

racy and sub-10µs inference overhead for each I/O. The neu-

ral network is built by training real-life production systems

dataset in order to learn SSDs as black-box devices. Further-

more, this paper provides a complete analysis of the training

result that give many insights about how the models behave

across different traces and devices, and also how to improve

the model’s accuracy. With IONET framework, we can build

models of storage devices in such a way that we can predict

the latency of every I/O of a full-workload running on a tar-

get storage cluster without actually running it on the cluster.

In the future, IONET will allow storage-system researchers

to benefit from and contribute to the IONET project, which

then spurs more solutions in this new research space.
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Willy Zwaenepoel, and Ricardo Bianchini. Managing Tail

Latency in Datacenter-Scale File Systems Under Production

Constraints. In EuroSys ’19.

[40] Mihir Nanavati, Jake Wires, and Andrew Warfield. Decibel:

Isolation and Sharing in Disaggregated Rack-Scale Storage.

In NSDI ’17.

[41] Jun Nemoto and Gregory R. Ganger. On io latency prediction

accuracy and automated load balancing in consolidated vm

environments. In IC2E, 2016.

[42] Qais Noorshams, Axel Busch, Andreas Rentschler, Dominik

Bruhn, Samuel Kounev, Petr Tuma, and Ralf H. Reussner. Au-

tomated modeling of i/o performance and interference effects

in virtualized storage systems. ICDCS Workshops, 2014.

[43] David Patterson. Technical Perspective: For Better or Worse,

Benchmarks Shape a Field. Communications of the ACM,

55(7), 2012.

[44] J. Schindler and G. R. Ganger. Automated disk drive charac-

terization. In CMU SCS Technical Report CMU-CS-99-176,

1999.

[45] S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao,

A. Ailamaki, C. Faloutsos, C. Faloutsos, and G. R. Ganger.

On multidimensional data and modern disks. In Proceedings

of the USENIX Conference on File and Storage Technologies,

FAST’05, 2005.

[46] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran,

Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven

Swanson. Willow: A User-Programmable SSD. In OSDI ’14.

[47] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos

Maltzahn, and Scott Brandt. Flash on Rails: Consistent Flash

Performance through Redundancy. In USENIX ATC ’14.

[48] N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson.

Microbenchmark-based extraction of local and global disk

characteristics. Technical Report UCB/CSD-99-1063, EECS

Department, University of California, Berkeley, 1999.

[49] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose,

Jeremie S. Kim, Yixin Luo, Yaohua Wang, Nika Mansouri

Ghiasi, Lois Orosa, Juan Gómez-Luna, and Onur Mutlu.
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