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ABSTRACT

We reveal loopholes of Speculative Execution (SE) implementations
under a unique fault model: node-level network throughput degra-
dation. This problem appears in many data-parallel frameworks
such as Hadoop MapReduce and Spark. To address this, we present
PBSE, a robust, path-based speculative execution that employs three
key ingredients: path progress, path diversity, and path-straggler
detection and speculation. We show how PBSE is superior to other
approaches such as cloning and aggressive speculation under the
aforementioned fault model. PBSE is a general solution, applicable
to many data-parallel frameworks such as Hadoop/HDFS+QFS,
Spark and Flume.
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1 INTRODUCTION

Data-parallel frameworks have become a necessity good in large-
scale computing. To finish jobs on time, such parallel frameworks
must address the “tail latency” problem. One popular solution is
speculative execution (SE); with SE, if a task runs slower than other
tasks in the same job (a “straggler”), the straggling task will be
speculated (via a “backup task™). With a rich literature of SE algo-
rithms (§3.4, §7), existing SE implementations such as in Hadoop
and Spark are considered quite robust. Hadoop’s SE for example
has architecturally remained the same for the last six years, based
on the LATE algorithm [83]; it can effectively handle stragglers
caused by common sources of tail latencies such as resource con-
tentions and heterogeneous resources.

However, we found an important source of tail latencies that cur-
rent SE implementations cannot handle graciously: node-level net-
work throughput degradation (e.g., a 1Gbps NIC bandwidth drops
to tens of Mbps or even below 1 Mbps). Such a fault model can
be caused by a severe network contention (e.g., from VM over-
packing) or due to degraded network devices (e.g., NICs and net-
work switches whose bandwidth drops by orders of magnitude to
Mbps/Kbps level in production systems; more in §2.2). The unique-
ness of this fault model is that only the network device performs
poorly, but other hardware components such as CPU and storage
are working normally; it is significantly different than typical fault
models for heterogeneous resources or CPU/storage contentions.

To understand the impact of this fault model, we tested Hadoop
[11] as well as other systems including Spark [82], Flume [9], and
S4 [12], on a cluster of machines with one slow-NIC node. We dis-
covered that many tasks transfer data through the slow-NIC node
but cannot escape from it, resulting in long tail latencies. Our anal-
ysis then uncovered many surprising loopholes in existing SE im-
plementations (§3), which we bucket into two categories: the “no”
straggler problem, where all tasks of a job involve the slow-NIC
node (since all tasks are slow, there is “no” straggler detected) and
the straggling backup problem, where the backup task involves the
slow-NIC node again (hence, both of the original and the backup
tasks are straggling at the same time).
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Overall, we found that a network-degraded node is worse than
a dead node, as the node can create a cascading performance prob-
lem. One network-degraded node can make the performance of the
entire cluster collapse (e.g., after several hours the whole-cluster job
throughput can drop from hundreds of jobs per hour to 1 job/hour).
This cascading effect can happen as unspeculated slow tasks lock
up the task slots for a long period of time.

Given the maturity of SE implementations (e.g., Hadoop is 10
years old), we investigate further the underlying design flaws that
lead to the loopholes. We believe there are two flaws. First, node-
level network degradation (without CPU/storage contentions) is not
considered a fault-model. Yet, this real fault model affects data-
transfer paths, not just tasks per se. This leads us to the second flaw:
existing SE approaches only report task progress but do not expose
path progress. Sub-task progresses such as data transfer rates are
simply lumped into one progress score, hiding slow paths from be-
ing detected by the SE algorithm.

In this paper, we present a robust solution to the problem, path-
based speculative execution (PBSE), which contains three impor-
tant ingredients: path progress, path diversity, and path-straggler
detection and speculation.

First, in PBSE, path progresses are exposed by tasks to their
job/application manager (AM). More specifically, tasks report the
data transfer progresses of their Input—Map, Map—Reduce (shuf-
fling), and Reduce—Output paths, allowing the AM to detect strag-
gling paths. Unlike the simplified task progress score, our approach
does not hide the complex dataflows and their progresses, which are
needed for a more accurate SE. Paths were not typically exposed
due to limited transparency between the computing (e.g., Hadoop)
and storage (e.g., HDFS) layers; previously, only data locality is
exposed. PBSE advocates the need for a more cross-layer collabo-
ration, in a non-intrusive way.

Second, before straggling paths can be observed, PBSE must
enforce path diversity. Let’s consider an initial job (data-transfer)
topology X—B and X—C, where node X can potentially experi-
ences a degraded NIC. In such a topology, X is a single point of
tail-latency failure (“tail-SPOF” for short). Path diversity ensures
no potential tail-SPOF will happen in the initial job topology. Each
MapReduce stage will now involve multiple distinct paths, enough
for revealing straggling paths.

Finally, we develop path-straggler detection and speculation,
which can accurately pinpoint slow-NIC nodes and create specula-
tive backup tasks that avoid the problematic nodes. When a path
A—B is straggling, the culprit can be A or B. For a more effective
speculation, our techniques employ the concept of failure groups
and a combination of heuristics such as greedy, deduction, and dy-
namic-retry approaches, which we uniquely personalize for MapRe-
duce stages.

We have implemented PBSE in the Hadoop/HDFS stack in total
of 6003 LOC. PBSE runs side by side with the base SE; it does
not replace but rather enhances the current SE algorithm. Beyond
Hadoop/HDFS, we also show that other data-parallel frameworks
suffer from the same problem. To show PBSE generality, we also
have successfully performed initial integrations to Hadoop/QFS stack
[67], Spark [82], and Flume [9].

Symbols  Descriptions

AM Application/Job Manager

I; Node for an HDFS input block to task i
r,17 2nd and 3rd replica nodes of an input block
M; Node for map task i

M; Node for speculated (") map i

R; Node for reduce task i

0O; Node for output block

07,07 2nd and 3rd replica nodes of an output block

A sample of a job topology (2 maps, 2 reduces):
Map phase I, -My, [,->M;
Shuffle phase M1 —>R1, M1 —>R2, Mz —>R1, Mz —>R2
Reduce phase  R;—0;—0]—07, R;—0,—0;—0}
Speculated M; I} —M]
Speculated R, M;—R), M;—R;,

Table 1: Symbols. The table above describes the symbols that we use
to represent a job topology, as discussed in Section 2.1 and ilustrated in
Figures 1, 3, and 5.

We performed an extensive evaluation of PBSE with a variety
of NIC bandwidth degradations (60 to 0.1 Mbps), real-world pro-
duction traces (Facebook and Cloudera), cluster sizes (15 to 60
nodes), scheduling policies (Capacity, FIFO, and Fair), and other
tail-tolerance strategies (aggressive SE, cloning, and hedge read).
Overall, we show that under our fault model, PBSE is superior to
other strategies (between 2-70x speed-ups above the 90* h-percentile
under various severities of NIC degradation), which is possible be-
cause PBSE is able to escape from the network-degraded nodes (as
it fixes the limitation of existing SE strategies).

In summary, PBSE is robust; it handles many loopholes (tail-
SPOF topologies) caused by node-level network degradation, en-
suring no single job is “locked” in degraded mode. Under this fault
model, PBSE performs faster than other strategies such as advanced
schedulers, aggressive SE, and cloning. PBSE is accurate in detect-
ing nodes with a degraded network; a prime example is accurately
detecting a map’s slow NIC within the reduce/shuffling stage, while
Hadoop always blames the reducer side. PBSE is informed; slow
paths that used to be a silent failure in Hadoop SE are now exposed
and avoided in speculative paths. PBSE is simple; it runs side-by-
side with the base SE and its integration does not require major
architectural changes. Finally, PBSE is general; it can be integrated
to many data-parallel frameworks.

In the following sections, we present an extended motivation
(§2), Hadoop SE loopholes (§3), PBSE design and evaluation (§4-
5), further integrations (§6), related work and conclusion (§7-8).

2 BACKGROUND AND MOTIVATION

In this section, we first describe some background materials (§2.1)
and present real cases of degraded network devices (§2.2) which
motivates our unique fault model (§2.3). We then highlight the im-
pact of this fault model to Hadoop cluster performance (§2.4) and
discuss why existing monitoring tools are not sufficient and Hadoop
SE must be modified to handle the fault model (§2.5).
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Figure 1: A Hadoop job and a successful SE. Figures (a) and
(b) are explained in the “Symbols” and “Successful SE” discussions in
Section 2.1, respectively.

2.1 Background

Yarn/Hadoop 2.0: A Hadoop node contains task containers/slots.
When a job is scheduled, Hadoop creates an Application Manager
(AM) and deploys the job’s parallel tasks on allocated containers.
Each rask sends a periodic progress score to AM (via heartbeat).
When a task reads/writes a file, it asks HDFS namenode to retrieve
the file’s datanode locations. Hadoop and HDFS nodes are colo-
cated, thus a task can access data remotely (via NIC) or locally (via
disk; aka. “data locality”). A file is composed of 64MB blocks. Each
is 3-way replicated.

Symbols: Table | describes the symbols we use througout the
paper to represent a job topology. For example, Figure la illus-
trates a Hadoop job reading two input blocks (I1 and Iy); each
input block can have 3 replicas (e.g., Iz, I/ 2 Ié’ ). The job runs 2
map tasks (M1, Mz); reduce tasks (R1, R2) are not shown yet. The
first map achieves data locality (I;—M; is local) while the second
map reads data remotely (I— M3 is via NICs). A complete job will
have three stages: Input—Map (e.g., I; —M;), Map—Reduce shuf-
fle (e.g., Mi—R;1, M;—R3), and Reduce—Output 3-node write
pipeline (e.g., R;—02—0,—0)).

Successful SE: The Hadoop SE algorithm (or “base SE” for
short), which is based on LATE [83, §4], runs in the AM of every
job. Figure 1b depicts a successful SE: I’s node has a degraded
NIC (bold circle), thus M3 runs slower than M; and is marked as a
straggler, then the AM spawns a new speculative/backup task (M)
on a new node that coincidentally reads from another fast input
replica (I;—My). For every task, the AM by default limits to only
one backup task.

2.2 Degraded Network Devices

Beyond fail-stop, network devices can exhibit “unexpected” forms
of failures. Below, we re-tell the real cases of limping network de-
vices in the field [1-8, 44, 48, 49, 57].

In many cases, NIC cards exhibit a high-degree of packet loss
(from 10% up to 40%), which then causes spikes of TCP retries,
dropping throughput by orders of magnitude. An unexpected auto-
negotiation between a NIC and a TOR switch reduced the band-
width between them (an auto-configuration issue). A clogged air
filter in a switch fan caused overheating, and subsequently heavy
re-transmission (e.g., 10% packet loss). Some optical transceivers
collapsed from Gbps to Kbps rate (but only in one direction). A
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non-deterministic Linux driver bug degraded a Gbps NIC’s perfor-
mance to Kbps rate. Worn-out cables reportedly can also drop net-
work performance. A worn-out Fibre Channel Pass-through module
in a high-end server blade added 200-3000 ms delay.

As an additional note, we also attempted to find (or perform)
large-scale statistical studies on this problem but to no avail. As al-
luded elsewhere, stories of “unexpected” failures are unfortunately

“only passed by operators over beers” [36]. For performance-degraded

devices, one of the issues is that, most hardware vendors do not
log performance faults at such a low level (unlike hard errors [37]).
Some companies log low-level performance metrics but aggregate
the results (e.g., hourly disk average latency [51]), preventing a de-
tailed study. Thus, the problem of performance-degraded devices is
still under studied and requires further investigation.

2.3 Fault Model

Given the cases above, our fault model is a severe network band-
width degradation experienced by one or more machines. For ex-
ample, the bandwidth of a NIC can drop to low Mbps or Kbps level,
which can be caused by many hardware and software faults such as
bit errors, extreme packet loss, overheating, clogged air filters, de-
fects, buggy auto-negotiations, and buggy firmware and drivers, as
discussed above.

A severe node-level bandwidth degradation can also happen in
public multi-tenant clouds where extreme outliers are occasionally
observed [66, Fig. 1]. For instance, if all the tenants of a 32-core ma-
chine run network intensive processes, each process might only ob-
serve ~30 Mbps, given a 1GBps NIC. With a higher-bandwidth 10-
100GBps NIC and future 1000-core processors [26, 79], the same
problem will apply. Furthemore, over-allocation of VMs more than
the available CPUs can reduce the obtained bandwidth by each VM
due to heavy context switching [76]. Such problem of “uneven con-
gestion” across datanodes is relatively common [16].

2.4 TImpacts

Slow tasks are not speculated: Under the fault model above, Hadoop
SE fails to speculate slow tasks. Figure 2a shows the CDF of job du-
ration times of a Facebook workload running on a 15-node Hadoop
cluster without and with one 1-Mbps slow node (With-0-Slow Vs.
With-1-Slow nodes). The 1-Mbps slow node represents a degraded
NIC. As shown, in a healthy cluster, all jobs finish in less than 3
minutes. But with a slow-NIC node, many tasks are not speculated
and cannot escape the degraded NIC, resulting in long job tail laten-
cies, with 10% of the jobs (y=0.9) finishing more than 1 hour.

“One degraded device to slow them all:” Figure 2b shows
the impact of a slow NIC to the entire cluster over time. With-
out a slow NIC, the cluster’s throughput (#jobs finished) increases
steadily (around 172 jobs/hour). But with a slow NIC, after about 4
hours (x=250min) the cluster throughput collapses to 1 job/hour.

The two figures show that existing speculative execution fails to
cut tail latencies induced by our fault model. Later in Section 3, we
dissect the root causes.
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Figure 2: Impact of a degraded NIC. Figure (a) shows the CDF of
Jjob duration times of a Facebook workload on a 15-node Hadoop cluster
without and with a slow node (With-0-Slow vs. With-1-Slow lines). The
slow node has a 1-Mbps degraded NIC. Figure (b) is a replica of Figure
2 in our prior work [44], showing that after several hours, the problem
cascades to entire cluster, making cluster throughput drops to 1 job/hour.

2.5 The Need for a More Robust SE and
Why Monitoring Tools Do Not Help

We initially believed that the problem can be easily solved with
some cluster monitoring tools (hence why we did not invent PBSE
directly after our earlier work [44]). However, the stories above
point to the fact that monitoring tools do not always help operators
detect and remove the problem quickly. The problems above took
days to weeks to be fully resolved, and meanwhile, the problems
continuously affected the users and sometimes cascaded to the en-
tire cluster. One engineer called this a “costly debugging tail.” That
is, while more-frequent failures can be solved quickly, less-frequent
but complex failures (that cannot be mitigated by the systems) can
significantly cost the engineers’ time. In one story, an entire group
of developers were pulled to debug the problem, costing the com-
pany thousands of dollar.

Monitoring tools not sufficient for the following reasons: (1) Mon-
itoring tools are important but they are “passive/offline” solutions;
they help signal slow components but shutting down a slow machine
is still the job of human operators (an automated shutdown algo-
rithm can have false positives that incorrectly shutdown healthy ma-
chines). (2) To perform diagnoses, (data) nodes cannot be abruptly
taken offline as it can cause excessive re-replication load [68]. Op-
erator’s decision to decommission degraded nodes must be well-
grounded; many diagnoses must be performed before a node is
taken offline. (3) Degraded modes can be complex (asymmetrical
and/or transient), making diagnosis harder. In one worst-case story,
several months were needed to pinpoint worn-out cables as the root
cause. (4) As aresult, there is a significant window of time between
when the degradation started and when the faulty device is fully di-
agnosed. Worse, due to economies of scale, 100-1000 servers are
managed by a single operator [34], hence longer diagnosis time.

In summary, the discussion above makes the case for a more ro-
bust speculative execution as a proper “online” solution to the prob-
lem. In fact, we believe that path straggler detection in PBSE can
be used as an alarm or a debugging aid to existing monitoring tools.

@ &)
Yo @

map source

B

output destination

(a) Same slow
input source

Figure 3: Tail-SPOF and “No” Stragglers. Figures (a)-(c) are de-
scribed in Sections 3.1a-c, respectively. I, /I in Figure (a), M; in (b), and
01/0; in (c) are a tail-SPOF that makes all affected tasks slow at the same
time, hence “no” straggler. Please see Figure 1 for legend description.

3 SE LOOPHOLES

This section presents the many cases of failed speculative execution
(i.e., “SE loopholes”). For simplicity of discussion, we only inject
one degraded NIC.

Benchmarking: To test Hadoop SE robustness to the fault model
above, we ran real-world production traces on 15-60 nodes with one
slow NIC (more details in §5). To uncover SE loopholes, we collect
all task topologies where the job latencies are significantly longer
than the expected latency (as if the jobs run on a healthy cluster
without any slow NIC). We ran long experiments, more than 850
hours, because every run leads to non-deterministic task placements
that could reveal new loopholes.

SE Loopholes: An SE loophole is a unique topology where a job
cannot escape from the slow NIC. That is, the job’s latency follows
the rate of the degraded bandwidth. In such a topology, the slow
NIC becomes a single point of tail-latency failure (a “tail-SPOF”).
By showing tail-SPOF, we can reveal not just the straggling tasks,
but also the straggling paths. Below we describe some of the repre-
sentative loopholes we found (all have been confirmed by Hadoop
developers). For each, we use a minimum topology for simplic-
ity of illustration. The loopholes are categorized into no-straggler-
detected (§3.1) and straggling-backup (§3.2) problems.

We note that our prior work only reported three “limplock”™ topolo-
gies [44, §5.1.2]) from only four simple microbenchmarks. In this
subsequent work, hundreds of hours of deployment allow us to de-
bug more job topologies and uncover more loopholes.

3.1 No Straggler Detected

Hadoop SE is only triggered when at least one task is straggling.
We discovered several topologies where all tasks (of a job) are slow,
hence “no” straggler.

(a) Same slow input source: Figure 3a shows two map tasks (M,
M3) reading data remotely. Coincidentally (due to HDFS’s selec-
tion randomness when locality is not met), both tasks retrieve their
input blocks (I, I2) from the same slow-NIC node. Because all the
tasks are slow, there is “no” straggler. Ideally, a notion of “path di-
versity” should be enforced to ensure that the tail-SPOF (I;/I2’s
node) is detected. For example, M2 should choose another input
source (I} or I}).

(b) Same slow map source: Figure 3b shows a similar problem,
but now during shuffle. Here, the map tasks (Mj, M3) already com-
plete normally; note that M3 is also fast due to data locality (I—Ma
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Figure 4: SE Algorithm “Bug”. The two figures above are explained
in Section 3.1d.

does not use the slow NIC). However, when shuffle starts, all the
reducers (Rj, R2) fetch My’s intermediate data through the slow
NIC, hence “no” straggling reducers. Ideally, if we monitor path
progresses (the four arrows), the two straggling paths (M2—R1,
Mz—R>) and the culprit node (M2’s node) can be easily detected.

While case (a) above might only happen in small-parallel jobs,
case (b) can easily happen in large-parallel jobs, as it only needs
one slow map task with data locality to hit the slow NIC.

(c) Same slow output intersection: Figure 3¢ shows another case
in write phase. Here, the reducers’ write pipelines (Ry—0;—07,
R2—>02—>Oé) intersect the same slow NIC (O7/02’s node), hence
“no” straggling reducer.

(d) SE algorithm “bug”: Figure 4a shows progress scores of
three reducers, all observe a fast shuffle (the quick increase of pro-
gress scores to 0.8), but one reducer (R;) gets a slow-NIC in its out-
put pipeline (flat progress score). Ideally, Ry (which is much slower
than R2&R3) should be speculated, but SE is never triggered. Fig-
ure 4b reveals the root cause of why R; never get speculated. With
a fast shuffle but a slow output, the estimated R; replacement time
(EstReplace) is always slightly higher (0.1-0.3 minutes) than the
estimated R; completion time (EstComplete). Hence, speculation
is not deemed beneficial (incorrectly).

3.2 Straggling Backup Tasks

Let’s suppose a straggler is detected, then the backup task is ex-
pected to finish faster. By default, Hadoop limits one backup per
speculated task (e.g., M] for My, but no M"). We found loopholes
where this “one-shot” task speculation is also “unlucky” (involves
the slow NIC again).

(a) Same slow input source: Figure 5a shows a map (M3) read-
ing from a slow remote node (I2) and is correctly marked as a strag-
gler (slower than M ). However, when the backup task (Mé) started,
HDFS gave the same input source (I2). As a result, both the original
and backup tasks (Ma, Mé) are slow.

(b) Same slow node in original and backup paths: Figure 5b re-
veals a similar case but with a slightly different topology. Here, the
backup (Mé) chooses a different source (Ié), but it is put in the slow
node. As a result, both the original and backup paths (I,—Mj and
Ié —>Mé) involve a tail-SPOF (Mé /I2’s node).

(c) Same slow map source: Figure 5c depicts a similar shuffle
topology as Figure 3b, but now the shuffle pattern is not all-to-all
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(b) Same siow node in
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Figure 5: Tail-SPOF and Straggling Backups. Figures (a)-(c) are
discussed in Sections 3.2a-c, respectively. I, in Figure (a), I,/M,, in (b),
and M, in (c) are a tail-SPOF; the slow NIC is coincidentally involved
again in the backup task. Please see Figure I for legend description.

(job/data specific). Since M3’s NIC is slow, Ry becomes a straggler.
The backup R/, however cannot choose another map other than read-
ing through the slow My’s NIC again. If the initial paths (the first
three arrows) are exposed, a proper recovery can be done (e.g., pin-
point My as the culprit and run M}).

3.3 The Cascading Impact

In Section 2.4 and Figure 2b, we show that the performance of the
entire can eventually collapse. As explained in our previous work
[44, §5.1.4], the reason for this is that the slow and unspeculated
tasks are occupying the task containers/slots in healthy nodes for a
long time. For example, in Figures 3 and 5, although only one node
is degraded (bold edge), other nodes are affected (striped nodes).
Newer jobs that arrive are possible to interact with the degraded
node. Eventually, all tasks in all nodes are “locked up” by the de-
graded NIC and there are not enough free containers/slots for new
jobs. In summary, failing to speculate slow tasks from a degraded
network can be fatal.

3.4 The Flaws

Hadoop is a decade-old mature software and many SE algorithms
are derived from Hadoop/MapReduce [43, 83]. Thus, we believe
there are some fundamental flaws that lead to the existence of SE
loopholes. We believe there are two flaws:

(1) Node-level network degradation is not incorporated as a fault
model. Yet, such failures occur in production. This fault model is
different than “node contentions” where CPU and local storage are
also contended (in which cases, the base SE is sufficient). In our
model, only the NIC is degraded, not CPU nor storage.

(2) Task # Path. When the fault model above is not incorporated,
the concept of path is not considered. Fatally, path progresses of
a task are lumped into one progress score, yet a task can observe
differing path progresses. Due to lack of path information, slow
paths are hidden. Worse, Hadoop can blame the straggling task even
though the culprit is another node (e.g., in Figure 5c, Ry is blamed
even though M is the culprit).

In other works, task sub-progresses are also lumped into one
progress score (e.g., in Late [83, §4.4], Grass [32, §5.1], Mantri
[33, §5.5], Wrangler [77, §4.2.1], Dolly [30, §2.1.1], ParaTimer
[63, §2.5], Parallax [64, §3]). While these novel methods are superb
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in optimizing SE for other root causes (e.g., node contentions, het-
erogeneous resources), they do not specifically tackle network-only
degradation (at individual nodes). Some of these works also tries to
monitor data transfer progresses [33], but they are still lumped into
a single progress score.

4 PBSE

‘We now present the three important elements of PBSE: path progress
(§4.1), path diversity (§4.2), and path-straggler detection and spec-
ulation (§4.3), and at the end conclude the advantages of PBSE
(§8). This section details our design in the context of Hadoop/HDFS
stack with 3-way replication and 1 slow NIC (F=1).!

4.1 Paths

The heart of PBSE is the exposure of path progresses to the SE algo-
rithm. A path progress P is a tuple of {Src, Dst, Bytes, T, BW}, sent
by tasks to the job’s manager (AM); Bytes denotes the amount of
bytes transferred within the elapsed time T and BW denotes the path
bandwidth (derived from Bytes/T) between the source-destination
(Src, Dst) pair. Path progresses are piggybacked along with exist-
ing task heartbeats to the AM. In PBSE, tasks expose to AM the
following paths:

o Input—Map (I—-M): In Hadoop/ HDFS stack, this is typically
a one-to-one path (e.g., I,—=M3) as a map task usually reads one
64/128-MB block. Inputs of multiple blocks are usually split to mul-
tiple map tasks.

o Map—Reduce (M—R): This is typically an all-to-all shuffling
communication between a set of map and reduce tasks; many-to-
many or one-to-one communication is possible, depending on the
user-defined jobs and data content. The AM now can compare the
path progress of every M—R path in the shuffle stage.

o Reduce—Output (R—0O): Unlike earlier paths above, an output
path is a pipeline of sub-paths (e.g., R1—0;—0]—07"). A single
slow node in the pipeline will become a downstream bottleneck. To
allow fine-grained detection, we expose the individual sub-path pro-
gresses. For example, if R;—Oy is fast, but O;—0] and O] -0}
are slow, O; can be the culprit.

The key to our implementation is a more information exposure
from the storage (HDFS) to compute (Hadoop) layers. Without more
transparency, important information about paths is hidden. Fortu-
nately, the concept of transparency in Hadoop/HDFS already exists
(e.g., data locality exposure), hence the feasibility of our extension.
The core responsibility of HDFS does not change (i.e., read/write
files); it now simply exports more information to support more SE
intelligence in the Hadoop layer.

4.2 Path Diversity

Straggler detection is only effective if independent progresses are
comparable. However, patterns such as X—M; and X—M; with
X as the tail-SPOF is possible, in which case potential stragglers
are undetectable. To address this, path diversity prevents a poten-
tial tail-SPOF by enforcing independent, comparable paths. While

IF denotes the tolerable number of failures.

the idea is simple, the challenge lies in efficiently removing poten-
tial input-SPOF, map-SPOF, reduce-SPOF, and output-SPOF in in
every MapReduce stage:

(a) No input-SPOF in I-M paths: It is possible that map tasks on
different nodes read inputs from the same node (I; >M;j, [,—>Ma,
and 1;=I,).% To enforce path diversity, map tasks must ask HDFS
to diversify input nodes, at least to two (F+1) source nodes.

There are two possible designs, proactive and reactive. Proactive
enforces all tasks of a job to synchronize with each other to verify
the receipt of at least two input nodes. This early synchronization
is not practical because tasks do not always start at the same time
(depends on container availability). Furthermore, considering that
in common cases not all jobs receive an input-SPOF, this approach
imposes an unnecessary overhead.

We take the reactive approach. We let map tasks run indepen-
dently in parallel, but when map tasks send their first heartbeats to
the AM, they report their input nodes. If the AM detects a potential
input-SPOF, it will reactively inform one (as F=1) of the tasks to
ask HDFS namenode to re-pick another input node (e.g., I,—M,
and Ié #11).3 After the switch (I, to Ié), the task continues reading
from the last read offset (no restart overhead).

(b) No map-SPOF in I-M and M—R paths: It is possible that
map tasks are assigned to the same node (I; =My, [, =Mz, M1 =Ma,
and M;/M3’s node is a potential tail-SPOF); note that Hadoop only
disallows a backup and the original tasks to run in the same node
(e.g., M1#M], M2#My). Thus, to prevent one map-SPOF (F=1), we
enforce at least two nodes (F+1) chosen for all the map tasks of a
job. One caveat is when a job deploys only one map (reads only
one input block), in which case we split it to two map tasks, each
reading half of the input. This case however is very rare.

As of the implementation, when a job manager (AM) requests C
containers from the resource manager (RM), the AM also supplies
the rule. RM will then return C—1 containers to the AM first, which
is important so that most tasks can start. For the last container, if
the rule is not satisfied and no other node is currently available, RM
must wait. To prevent starvation, if other tasks already finish half
way, RM can break the rule.

(¢) No reduce-SPOF in M—R and R—O paths: In a similar way,
we enforce each job to have reducers at least in two different nodes.
Since the number of reducers is defined by the user, not the runtime,
the only way to prevent a potential reduce-SPOF is by cloning the
single reducer. This is reasonable as a single reducer implies a small
job and cloning small tasks is not costly [30].

(d) No output-SPOF in R— O paths: Output pipelines of a// reduc-
ers can intersect the same node (e.g., R1—0;—0], R;—0,—0),
and O1=03). Handling this output-SPOF is similar to Rule (a). How-
ever, since write is different than read, the pipeline re-picking over-
head can be significant if not designed carefully.

Through a few design iterations, we modify the reduce stage to
pre-allocate write pipelines during shuffling and keep re-picking
until all the pipelines are free from an output-SPOF. In vanilla Hadoop,
write pipelines are created after shuffling (after reducers are ready

2A=B implies A and B are in the same node.
3A#B implies A and B are not in the same node.
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to write the output). Contrary, in our design, when shuffling finishes,
the no-SPOF write pipelines are ready to use.

We now explain why pre-allocating pipelines removes a signifi-
cant overhead. Unlike read switch in Rule (a), switching nodes in
the middle of writes is not possible. In our strawman design, after
pipeline creation (e.g., Rz—X—0}—...), reducers report paths to
AM and begin writing, similar to Rule (a). Imagine when an output-
SPOF X is found but Ry already wrote 5 MB. A simple switch (e.g.,
Ry—Y—...) is impossible because Ry no longer has the data (be-
cause Ry’s HDFS client layer only buffers 4 MB of output). Filling
Y with the already-transferred data from O; will require complex
changes in the storage layer (HDFS) and alter its append-only na-
ture. Another way around is to create a backup reducer (R}) with a
new no-SPOF pipeline (e.g., Rj—Y—...), which unfortunately in-
curs a high overhead as R, must repeat the shuffle phase. For these
reasons, we employ a background pre-allocation, which obviates
pipeline switching in the middle of writes.

Another intricacy of output pipelines is that an output intersec-
tion does not always imply an output-SPOF. Let us consider R1—A
—X and R;—B—X. Although X is an output intersection, there is
enough sub-path diversity needed to detect a tail-SPOF. Specifically,
we can still compare the upper-stream R;— A and the lower-stream
A—X to detect whether X is slow. Thus, as long as the intersec-
tion node is not the first node in all the write pipelines, pipeline
re-picking is unnecessary. As an additional note, we collapse local-
transfer edges; for example, if Ri—A and Ry—B are local disk
writes, A and B are removed, resulting in Ry —X and R, — X, which
will activate path diversity as X is a a potential tail-SPOF.

Finally, we would like to note that by default PBSE will fol-
low the original task placement (including data locality) from the
Hadoop scheduler and the original input source selection from HDFS.
Only in rare conditions will PBSE break data locality. For example,
let us suppose I; »M; and I;—M3 achieve data locality and both
data transfers happen in the same node. PBSE will try to move M2
to another node (the “no map-SPOF” rule) ideally to one of the two
other nodes that contain I»’s replicas (I; or I/). But if the nodes
of I7, and I} do not have a free container, then Mamust be placed
somewhere else and will read its input (I /T} /T}") remotely.

4.3 Detection and Speculation

As path diversity ensures no potential tail-SPOF, we then can com-
pare paths, detect path-stragglers, and pinpoint the faulty node/NIC.
Similar to base SE, PBSE detection algorithm is per-job (in AM)
and runs for every MapReduce stage (input, shuffle, output). As an
important note, PBSE runs side by side with the base SE; the latter
handles task stragglers, while PBSE handles path stragglers. PBSE
detection algorithm runs in three phases:

(1) Detecting path stragglers: In every MapReduce stage, AM
collects a set of paths (Sp) and labels P as a potential straggling
path if its BW (§4.1) is less than f X the average bandwidth, where
0 < B < 1.0 (configurable). The straggling path will be speculated
only if its estimated end time is longer than the estimated path re-
placement time (plus the standard deviation).* If a straggling path
4We omit our algorithm details because it is similar to task-level time-estimation and

speculation [23]. The difference is that we run the speculation algorithm on path pro-
gresses, not just task-level progresses.

SoCC 17, September 24-27, 2017, Santa Clara, CA, USA

(e.g., A—>B) is to be speculated, we execute the following phases
below, in order to pinpoint which node (A or B) is the culprit.

(2) Detecting the slow-NIC node with failure groups: We catego-
rize every P in Sp into failure/risk groups [84]. A failure group Gy
is created for every source/destination node N in Sp. If a path P in-
volves anode N, P is put in G . For example, path A—B will be in
G4 and Gp groups. In every group G, we take the total bandwidth.
If there is a group whose bandwidth is smaller than § X the average
of all group bandwidths, then a slow-NIC node is detected.

Let’s consider the shuffling topology in Figure 3b with 1000Mbps
normal links and a slow M3’s NIC at 5 Mbps. AM receives four
paths (M; —Rj, M;—Ry, M2—R1, and Mz —R3) along with their
bandwidths (e.g., 490, 450, 3, and 2 Mbps respectively). Four groups
are created and the path bandwidths are grouped (M;:{490, 450},
M;:{3, 2}, R1:{490, 3}, and R»:{450, 2}). After the sums are com-
puted, M2’s node (5 Mbps total) will be marked as the culprit, im-
plying M2 must be speculated, even though it is in the reduce stage
(in PBSE, the stage does not define the straggler).

(3) Detecting the slow-NIC node with heuristics: Failure groups
work effectively in cases with many paths (e.g., many-to-many com-
munications). In some cases, not enough paths exist to pinpoint the
culprit. For example, given only a fast A—B and a straggling C—D,
we cannot pinpoint the faulty node (C or D). Fortunately, given
three factors (path diversity rules, the nature of MapReduce stages,
and existing rules in Hadoop SE), we can employ the following ef-
fective heuristics:

(a) Greedy approach: Let’s consider a fast [; —M; and a straggling
I2—Mp; the latter must be speculated, but the fault could be in Iz or
M_. Fortunately, Hadoop SE by default prohibits M to run on the
same node as Mz. Thus, we could speculate with I —>Mé. However,
we take a greedy approach where we speculate a completely new
pair 1,—M (avoiding both Iz and Mz nodes). To implement this,
when Hadoop spawns a task (M), it can provide a blacklisted input
source (Iz) to HDFS.

Arguably, node of I; could be busier than I5’s node, and hence
our greedy algorithm is sub-optimal. However, we find that HDFS
does not employ a fine-grained load balancing policy; it only tries
to achieve rack/node data locality (else, it uses a random selec-
tion). This simplicity is reasonable because Hadoop tasks are evenly
spread out, hence a balanced cluster-wide read.

(b) Deduction approach: While the greedy approach works well
in the Input—Map stage, other stages need to employ a deduc-
tion approach. Let’s consider a one-to-one shuffling phase (a fast
M;—R; and a slow M2—R3z). By deduction, since My already
“passes the check” in the I-M; stage (it was not detected as a
slow-NIC node), then the culprit is likely to be Rz. Thus, M» —>Ré
backup path will start. Compared to deduction approach, employ-
ing a greedy approach in shuffling stage is more expensive (e.g.,
speculating M7, —R requires spawning My).

(c) Dynamic retries: Using the same example above (slow Mz —R3),
caution must be taken if My reads locally. That is, if [-M3 only
involves a local transfer, Mz is not yet proven to be fault-free. In
this case, blaming My or R; is only 50/50-chance correct. In such
a case, we initially do not blame the map side because speculating
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M with M is more expensive. We instead take the less expensive
gamble; we first speculate the reducer (with R7), but if Ma—R)
path is also slow, we perform a second retry (M;—RY). Put simply,
sometimes it can take one or two retries to pinpoint one faulty node.
We call this dynamic retries, which is different than the limited-retry
in base SE (default of 1).

The above examples only cover [ =M and M—R stages, but the
techniques are also adopted for R—O stage.

5 EVALUATION

We implemented PBSE in Hadoop/HDFS v2.7.1 in 6003 LOC (3270
in AM, 1351 in Task Management, and 1382 in HDFS). We now
evaluate our implementation.

Setup: We use Emulab nodes [15], each running a (dual-thread)
2x8-core Intel Xeon CPU E5-2630v3 @ 2.40GHz with 64GB
DRAM and 1Gbps NIC. We use 15-60 nodes, 12 task slots per
Hadoop node (the other 4 core for HDFS), and 64MB HDFS block
size.” We set f=0.1 (§4.3), a non-aggressive path speculation.

Slowdown injection: We use Linux tc to delay one NIC to 60,
30, 10, 1, and 0.1 Mbps; 60-30 Mbps represent a contended NIC
with 16-32 other network-intensive tenants and 10-0.1 Mbps repre-
sent a realistic degraded NIC; real cases of 10%-40% packet loss
were observed in production systems (§2.2), which translate to 2
Mbps to 0.1 Mbps NIC (as throughput exhibits exponential-decaying
pattern with respect to packet loss rate).

Workload: We use real-world production workloads from Face-
book (FB2009 and FB2010) and Cloudera (CC-b and CC-e) [41]. In
each, we pick a sequence of 150 jobs® with the lowest inter-arrival
time (i.e., a busy cluster). We use SWIM to replay and rescale
the traces properly to our cluster sizes as instructed [24]. Figure
6 shows the distribution of job sizes and inter-arrival times.

Metrics: We use two primary metrics: job duration (T) and speed-

up (=Tgase/TpPBSE)-

5.1 PBSE vs. Hadoop (Base) SE

Figure 7 shows the CDF of latencies of 150 jobs from FB2010 on
15 nodes with five different setups from right (worse) to left (better):
Base Hadoop SE with one 1Mbps slow NIC (BaseSE-1S1low), PBSE
with the same slow NIC (PBSE-1Slow), PBSE without any bad NIC
(PBSE-0Slow), Base SE without any bad NIC (BaseSE-0Slow), and
Base SE with one dead node (BaseSE-1Dead).

We make the following observations from Figure 7. First, as al-
luded in §3, Hadoop SE cannot escape tail-SPOF caused by the de-
graded NIC, resulting in long job tail latencies with the longest job
finishing after 6004 seconds (BaseSE-1Slow line). Second, PBSE is
much more effective than Hadoop SE; it successfully cuts tail la-
tencies induced by degraded NIC (PBSE-1Slow vs. BaseSE-1Slow).
Third, PBSE cannot reach the “perfect” scenario (BaseSE-0Slow);
we dissect this more later (§5.2). Fourth, with Hadoop SE, a slow
NIC is worse than a dead node (BaseSE-1Slow Vs. BaseSE-1Dead);

5T0day, HDFS default block size is 128 MB, which actually will show better PBSE
results because of the longer data transfer. We use 64 MB to be consistent with all of
our initial experiments.

6150 jobs are chosen so that every normal run takes about 15 minutes; this is because
the experiments with severe delay injections (e.g., 1 Mbps) can run for hours for base
Hadoop. Longer runs are possible but will prevent us from completing many experi-
ments.
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Figure 6: Distribution of job sizes and inter-arrival times. The
left figure shows CDF of the number of (map) tasks per job within the
chosen 150 jobs from each of the production traces. The number of reduce
tasks is mostly 1 in all the jobs. The right figure shows the CDF of job
inter-arrival times.
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Figure 7: PBSE vs. Hadoop (Base) SE (§5.1). The figure above
shows CDF of latencies of 150 FB2010 jobs running on 15 nodes with
one 1-Mbps degraded NIC (1Slow), no degraded NIC (0Slow), and one
dead node (1Dead).

put simply, Hadoop is robust against fail-stop failures but not de-
graded network. Finally, in the normal case, PBSE does not exhibit
any overhead; the resulting job latencies in PBSE and Hadoop SE
under no failure are similar (PBSE-0Slow vS. Base-0Slow).

We now perform further experiments by varying the degraded
NIC bandwidth (Figure 8a), workload (8b), and cluster size (8c).
To compress the resulting figures, we will only show the speedup
of PBSE over Hadoop SE (a more readable metric), as explained in
the figure caption.

Varying NIC degradation: Figure 8a shows PBSE speed-ups
when we vary the NIC bandwidth of the slow node to 60, 30, 10, 1,
and 0.1 Mbps (the FB2010 and 15-node setups are kept the same).
‘We make two observations from this figure. First, PBSE has higher
speed-ups at higher percentiles. In Hadoop SE, if a large job is
“locked” by a tail-SPOF, the job’s duration becomes extremely long.
PBSE on the other hand can quickly detect and failover from the
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(a) Varying Bandwidth of Degraded NIC

(b) Varying Workload

(c) Varying Cluster Size
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Figure 8: PBSE speed-ups (vs. Hadoop Base SE) with varying (a) degradation, (b) workload, and (c) cluster size (§5.1). The x-axis
above represents the percentiles (y-axis) in Figure 7 (e.g., “P80” denotes 80'"-percentile). For example, the bold (1Mbps) line in Figure Sa plots the PBSE
speedup at every percentile from Figure 7 (i.e., the horizontal difference between the PBSE-1S1low and Base-1Slow lines). As an example point, in Figure
7, at 80thpercentile (y=0.8),0ur speed-up is 1.7x (Tgase/Tpese = 54sec/32sec) but in Figure Sa, the axis is reversed for readability (at x=P80, PBSE

speedup is y=1.7).

Features In stage: | #Tasks | #Jobs
Path I-M 66 59
Diversity M—R 125 125
(§4.2) R—-O0 0 0
Path I-M 62 54
Speculation M—R 26 6
(§4.3) R—-0O 28 12

Table 2: Activated PBSE features (§5.2). The table shows how
many times each feature is activated, by task and job counts, in the
PBSE-1Slow experiment in Figure 7.

straggling paths. With a 60Mbps congested NIC, PBSE delivers
some speed-ups (1.5-1.7x) above P98. With a more congested NIC
(30 Mbps), PBSE benefits start to become apparent, showing 1.5-
2% speed-ups above P90. Second, PBSE speed-up increases (2-70%)
when the NIC degradation is more severe (e.g., the speedups under
1 Mbps are relatively higher than 10 Mbps). However, under a very
severe NIC degradation (0.1 Mbps), our speed-up is still positive
but slightly reduced. The reason is that at 0.1 Mbps, the degraded
node becomes highly congested, causing timeouts and triggering
fail-stop failover. Again, in Hadoop SE, a dead node is better than a
slow NIC (Figure 7). The dangerous point is when a degraded NIC
slows down at a rate that does not trigger any timeout.

Varying workload and cluster size: Figure 8b shows PBSE
speed-ups when we vary the workloads: FB2009, FB2010, CC-b,
CC-e (1Mbps injection and 15-node setups are kept the same). As
shown, PBSE works well in many different workloads. Finally, Fig-
ure 8c shows PBSE speed-ups when we vary the cluster size: 15 to
60 nodes (1Mbps injection and FB2010 setups are kept the same).
The figure shows that regardless of the cluster size, a degraded NIC
can affect many jobs. The larger the cluster size, tail-SPOF proba-
bility is reduced but still appear at a significant rate (> P90).

5.2 Detailed Analysis

We now dissect our first experiment’s results (Figure 7).
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- 12->M2
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[Stertup] | ®) |
|Slow Start-up [JFRR raeS P Good node
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[— Slow NIC
M1 ... Mn (©
e
ﬂ Ri..Rn | Slow Clean-up | Straggler
AM-->0-->0'-->0" (>10 secs) detected

Figure 9: Residual sources of tail latencies (§5.2).

Activated features: Table 2 shows how many times PBSE fea-
tures (§4.2-4.3) are activated in the PBSE-1Slow experiment in Fig-
ure 7. First, in terms of path diversity, 66 tasks (59 jobs) require
[—M diversity. In the FB2010 workload, 125 jobs only have one
reducer, thus requiring M—R diversity (reducer cloning). R—O di-
versity is rarely needed (0), mainly because of enough upper-stream
paths to compare. Second, in terms of path speculation, we can see
that all the [I-M, M—R, and R—O speculations are needed (in 54,
6, and 12 jobs, respectively) to help the jobs escape all the many SE
loopholes we discussed before (§3).

Residual overhead: We next discuss interesting findings on why
PBSE cannot reach the “perfect” case (Base-0Slow vs. PBSE-1Slow
lines shown in Figure 7). Below are the sources of residual overhead
that we discovered:

Start-up overhead: Figure 9a shows that even when a straggling
path (I;—M3) is detected early, running the backup task (Mé) will
require 1-3 seconds of start-up overhead, which includes JVM warm-
up (class loading, interpretation) and “localization” [20] (including
transferring application’s . jar files from HDFS to the task’s node).
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Figure 10: PBSE vs. other strategies (§5.3).

At this point, this overhead is not removable and still become an
ongoing problem [60].

“Straggling” start-up/localization: Figure 9b shows two maps
with one of them (M3) running on a slow-NIC node. This causes
the transferring of application’s . jar files from HDFS to M’s node
to be slower than the one in M. In our experience, this “straggling”
start-up can consume 1-9 seconds (depending on the job size). What
we find interesting is that start-up time is nor accounted in task
progress and SE decision making. In other words, start-up durations
of M; and M3 are not compared, and hence no’ straggling start-up
is detected, delaying the task-straggler detection.

“Straggling” clean-up: Figure 9c shows that after a job finishes
(but before returning to user), the AM must write a JobHistory file
to HDFS (part of the clean-up operation). It is possible that one of
the output nodes is slow (e.g., AM—0—0’—0"), in which case
AM will be stuck in this “straggling” clean-up, especially with a
large JobHistory file from a large job (M1..M,,, R1..R;, n>>1). This
case is also outside the scope of SE.

We believe the last two findings reveal more flaws of existing
tail-tolerance strategies: they only focus on “task progress,” but do
not include “operational progress” (start-up/clean-up) as part of SE
decision making, which results in irremovable tail latencies. Again,
these flaws surface when our unique fault model (§2.3) is consid-
ered. Fortunately, all the problems above are solvable; start-up over-
head is being solved elsewhere [60] and straggling localization/clean-
up can be unearthed by incorporating start-up/clean-up paths and
their latencies as part of SE decision making.

5.3 PBSE vs. Other Strategies

In this section, we will compare PBSE against other scheduling and
tail-tolerant approaches.

Figure 10a shows the same setup as in Figure 7, but now we
vary the scheduling configurations: capacity (default), FIFO, and
fair scheduling. The figure essentially confirms that the SE loop-
holes (§3) are not about scheduling problems; changing the sched-
uler does not eliminate tail latencies induced by the degraded NIC.

Figure 10b shows the same setup, but now we vary the tail-tolerant
strategies: hedged read (0.5s), hedged read (0s), aggressive SE, and
task cloning. The first one, hedged read (HRead-0.5), is a new HDFS
feature [25] that enables a map task (e.g., [,—M3) to automatically
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Figure 11: PBSE speed-ups with multiple failures and hetero-
geneous network (§5.4 and §5.5).

read from another replica (Ié —My) if the first 64KB packet is not re-
ceived after 0.5 sec. The map will use the data from the fastest read.
The second one (HRead-0.0) does not wait at all. Hedged read can
unnecessarily consume network resources. As shown, HRead-0.0
does not eliminate all the tail-SPOF latencies (with a job latency
maximum of 7708 seconds). This is because hedged read only solves
the tail-SPOF scenarios in the input stage, but not across all the
MapReduce stages.

The third one (Aggr-SE) is the base SE but with the most ag-
gressive SE configuration’ and the last one (Cloning) represents
task-level cloning8 [30] (a.k.a. hedged requests [42]). Aggressive
SE speculates more intensively in all the MapReduce stages, but
long tail latencies still appear (with a maximum of 6801 seconds).
Even cloning also exhibits a long tail (3663 seconds at the end of the
tail) as it still inherits the flaws of base SE. In this scenario, PBSE
is the most effective (a maximum of only 251 seconds), as it solves
the fundamental limitations of base SE.

In summary, all other approaches above only reduce but do not
eliminate the possibility of tail-SPOF to happen. We did not empir-
ically evaluate PBSE with other strategies in the literature [30, 31,
33, 63, 64, 77] because either they are either proprietary or inte-
grated to non-Hadoop frameworks (e.g., Dryad [54], SCOPE [39],
or Spark [13]), but they were discussed earlier (§3.4).

5.4 PBSE with Multiple Failures

We also evaluate PBSE against two NIC failures (both 1 Mbps).
This is done by changing the value of F (§4). To handle two slow-
NIC nodes (F=2), at least three nodes (F+1) are required for path
diversity. F=3 is currently not possible as the replication factor is
only 3x. Figure 11a shows that PBSE performs effectively as well
under the two-failure scenario.

5.5 PBSE on Heterogeneous Resources

To show that PBSE does not break the performance of Hadoop SE
under heterogeneous resources [83], we run PBSE on a stable-state

7Aggressive SE configurations:

speculative-cap-running-tasks=1.0 (default=0.1);
speculative-cap-total-tasks=1.0 (default=0.01);
minimum-allowed-tasks=100 (default=10);

retry-after-speculate=1000ms (default=15000ms); and
slowtaskthreshold=0.1 (default=1.0).

8We slightly modified Hadoop to always speculate every task at the moment the task
starts (Hadoop does not support cloning by default).
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Figure 12: Beyond Hadoop/HDFS (§6). The figure shows laten-
cies of microbenchmarks running on four different systems (Hadoop/QFS,
Spark, Flume, and S4) with three different setups: baseline without
degraded NIC (Base-0Slow), baseline with one 1Mbps degraded NIC
(Base-1Slow), and with initial PBSE integration (PBSE-1Slow). Base-
line (Base) implies the vanilla versions. The Hadoop/QFS microbench-
mark and topology is shown in Figure 13c. The Spark microbenchmark is
a 2-stage, 4-task, all-to-all communication as similarly depicted in Figure
3b. The Flume and S4 microbenchmarks have the same topology. We did
not integrate PBSE to S4 as its development is discontinued.

network throughput distribution in Amazon EC2 that is popularly
cited (ranging from 200 to 920 Mbps; please see Figure 3 in [71]
for the detailed distribution). Figure 11b shows that PBSE speed-up
is constantly around one with small fluctuations at high percentiles
from large jobs. The figure also shows the different path-straggler
thresholds we use (f in §4.3). With a higher threshold, sensitivity is
higher and more paths are speculated. However, because the hetero-
geneity is not severe (>100 Mbps), the original tasks always com-
plete faster than the backup tasks.

5.6 Limitations

PBSE can fail in extreme corner cases: for example, if a file cur-
rently only has one surviving replica (path diversity is impossible);
if a large batch of devices degrade simultaneously beyond the toler-
able number of failures; or if there is not enough node availability.
Note that the base Hadoop SE also fails in such cases. When these
cases happen, PBSE can log warning messages to allow operators
to query the log and correlate the warnings with slow jobs (if any).
Another limitation of PBSE is that in a virtualized environment
(e.g., EC2), if nodes (as VMs) are packed to the same machine,
PBSE’s path diversity will not work. PBSE works if the VMs are
deployed across many machines and they expose the machine#.

6 BEYOND HADOOP AND HDFS

To show PBSE generality for many other data-parallel frameworks
beyond Hadoop/HDFS, we analyzed Apache Spark [13, 82], Flume
[9], S4 [12], and Quantcast File System (QFS) [67]. We found that
all of them suffer from the tail-SPOF problem, as shown in Figure
12 (Base-0Slow Vs. Base-1Slow bars). We have performed an initial
integration of PBSE to Spark, Flume, and Hadoop/QFS stack and
showed that it speculates effectively, avoids the degraded network,
and cuts tail latencies (PBSE-1Slow bars). We did not integrate fur-
ther to S4 as its development is discontinued.

We briefly describe the tail-tolerance flaws we found in these
other systems. Spark (Figure 12b) has a built-in SE similar to Hadoop
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SE, hence it is prone to the same tail-SPOF issues (§3). Flume (Fig-
ure 12c¢) uses a static timeout to detect slow channels (no path com-
parisons). If a channel’s throughput falls below 1000 events/sec, a
failover is triggered. If a NIC degrades to slightly above the thresh-
old, the timeout is not triggered. S4 (Figure 12d) has a similar static
timeout to Flume. Worse, it has a shared queue design in the fan-out
protocol. Thus, a slow recipient will cripple the sender in transfer-
ring data to the other recipients (a head-of-line blocking problem).

We also analyzed the Hadoop/QFS stack due to its differences
from the Hadoop/HDFS (3-way replication) stack.” Hadoop/QFS
represents computation on erasure-coded (EC) storage. Many EC
storage systems [53, 67, 74] embed tail-tolerant mechanisms in their
client layer. EC-level SE with m parities can tolerate up to m slow
NICs. In addition to tolerating slow NICs, EC-level SE can also
tolerate rack-level slowdown (which can be caused by a degraded
TOR switch or a malfunctioning power in the rack). For example
in Figure 13a, M; reads chunks of a file (I, I,). As reading from
I, is slower than from I, (due to the slow Rack-2), the EC client
layer triggers its own EC-level SE, creating a backup speculative
read from I, to construct the late Ij,.

Unfortunately, EC-level SE also has loopholes. Figure 13b shows
a similar case but with slow Rack-1. Here, the EC-level SE is not
triggered as all reads (I,—Mj, [, M) are slow. Let’s suppose an-
other map (Mz) completes fast in Rack-3, as in Figure 13c. Here,
Hadoop declares M; as a straggler, however it is possible that the
backup M7 will run in Rack-1, which means it must also read through
the slow rack. As a result, both original and backup tasks (M; and
M) are straggling.

To address this, with PBSE, the EC layer (QFS) exposes the in-
dividual read paths to Hadoop. In Figure 13c, if we expose I,—M;
and I,—M; paths, Hadoop can try placing the backup M7 in an-
other rack (Rack-2/3) and furthermore informs the EC layer to have
M; directly read from I, and I, (instead of I,). Overall, the key
principle is the same: when path progresses are exposed, the com-
pute and storage layers can make a more informed decision. Figure
12a shows that in a topology like Figure 13c, without PBSE, the job
follows the slow Rack-1 performance (Base-1Slow bar), but with
PBSE, the job can escape from the slow rack (PBSE-1Slow).

In summary, we have performed successful initial integrations of
PBSE to multiple systems, which we believe show its generality to
any data-parallel frameworks that need robust tail tolerance against
node-level network degradation. We leave full testing of these addi-
tional integrations as a future work.

7 RELATED WORK

We now discuss related work.
Paths: The concept of “paths” is prevalent in the context of mod-
eling (e.g., Magpie [38]), fine-grained tracing (e.g., XTrace [45],

9Quantcasl File System (QFS) [19, 67] is a Reed-Solomon (RS) erasure-coded (EC)
distributed file system. Although HDFS-RAID supports RS [22], when we started the
project (in 2015/2016), the RS is only executed in the background. In HDFS-RAID,
files are still triple-replicated initially. Moreover, because the stripe size is the same
as the block size (64 MB), only large files are erasure coded while small files are still
triple replicated (e.g., with RS(10,4), only files with 10x64MB size are erasure coded).
HDFS with foreground EC (HDFS-EC) was still an ongoing non-stable development
[17]. In contrast, QFS erasure-code data in the foreground with 64KB stripe size, hence
our usage of QFS.
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Figure 13: Rack slowdown and Erasure-Coded (EC) storage
(§6). For simplicity, the figure shows RS(2,1), a Reed Solomon where an
input file 1 is striped across two chunks (1, 1},) with one parity (I,) with
64KB stripe size (see Figure 2 in [67] for more detail).

Pivot Tracing [62]), diagnosis (e.g., black-box debugging [28], path-
based failure [40]), and availability auditing (e.g., INDaaS [84]),
among many others. This set of work is mainly about monitoring
and diagnosing paths. In PBSE, we actively “control” paths, for a
better online tail tolerance.

Tail tolerance: Earlier (§3.4), we have discussed a subtle limita-
tion of existing SE implementations that hide path progresses [30,
32, 33, 63, 64, 83]. While SE is considered a reactive tail-tolerance,
proactive ones have also been proposed, for example by cloning
(e.g., Dolly [30] and hedged requests [42]), launching few extra
tasks (e.g., KMN [70]), or placing tasks more intelligently (e.g.,
Wrangler [77]). This novel set of work also uses the classical defini-
tion of progress score (§3.4). Probabilistically, cloning or launching
extra tasks can reduce tail-SPOF, but fundamentally, as paths are
not exposed and controlled, tail-SPOF is still possible (§5.3). Tail
tolerance is also deployed in the storage layer (e.g., RobuStore [74],
CostTLO [73], C3 [69], Azure [53]). PBSE shows that storage and
compute layers need to collaborate for a more robust tail tolerance.

Task placement/scheduling: There is a large body of work on
task placement and scheduling (e.g., Pacman [31], delay schedul-
ing [81], Quincy [55], Retro [61]). These efforts attempt to cut tail
latencies in the initial task placements by achieving better data lo-
cality, load balancing, and resource utilization. However, they do
not modify SE algorithms, and thus SE (and PBSE) is orthogonal
to this line of work.

Tail root causes: A large body of literature has discovered many
root causes of tail latencies including resource contention of shared
resources [33, 35], hardware performance variability [59], work-
load imbalance [46], data and compute skew [29], background pro-
cesses [59], heterogeneous resources [83], degraded disks or SSDs
[51, 78], and buggy machine configuration (e.g., disabled process
caches) [43]. For degraded disks and processors, as we mentioned
before (§1), existing (task-based) speculations are sufficient to de-
tect such problems. PBSE highlights that degraded network is an
important fault model to address.
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Iterative graph frameworks: Other types of data-parallel sys-
tems include iterative graph processing frameworks [10, 27, 65].
As reported, they do not employ speculative execution within the
frameworks, but rather deal with stragglers within the running al-
gorithms [52]. Our initial evaluation of Apache Giraph [10] shows
that a slow NIC can hamper the entire graph computation, mainly
because Giraph workers must occasionally checkpoint its states to
HDFEFS (plus the use of barrier synchronization), thus experiencing
a tail-SPOF (as in Figure 3c). This suggests that part of PBSE may
be applicable to graph processing frameworks as well.

Distributed system bugs: Distributed systems are hard to get
right. A plethora of related work combat a variety of bugs in dis-
tributed systems, including concurrency [50, 57], configuration [75],
dependency [84], error/crash-handling [56, 80], performance [62],
and scalability [58] bugs. In this paper, we highlight performance
issues caused by speculative execution bugs/loopholes.

8 CONCLUSION

Performance-degraded mode is dangerous; software systems tend

to continue using the device without explicit failure warnings (hence,
no failover). Such intricate problems took hours or days until manu-
ally diagnosed, usually after whole-cluster performance is affected

(a cascading failure) [2, 3, 8]. In this paper, we show that node-level

network degradation combined with SE loopholes is dangerous. We

believe it is the responsibility of software’s tail-tolerant strategies,
not just monitoring tools, to properly handle performance-degraded

network devices. To this end, we have presented PBSE as a novel,
online solution to the problem.
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